HAIP Solutions BlackBird V2 VNIR Sensor is the easiest way to take hyperspectral images on drones. It is specifically designed for the use with DJI drones from the Matrice 200 & 300 series. The worldwide first hyperspectral Plug and Play solution for drones. Ready to fly and measure. BlackBird V2 has two separate sensors. One HSI sensor and a separate RGB camera for high quality live stream on the remote controller. The hyperspectral sensor provides a native image resolution of 540×540 pixels with 100 spectral channels, continuously covering the wavelength range from 500 nm to1000 nm.
BlackBird is based on a hyperspectral line scanner, but there is no need to move the sensor during image acquisition to get a full hyperspectral data cube. The internal movement unit creates a 2D image in under 3 seconds. If needed there is also a line-scan mode, where the movement to create an image comes from the drone. These two modes can be switched directly on the remote controller. Camera control and power support works via DJIs Sky port 2.0 connector and the remote controller. Through the DJI Pilot App you get features such as remote camera trigger, RGB livestream and flight-planning support. To simplify the work even more, the first results from the camera can be viewed directly on the remote controller and, for example, the exposure can be checked. Data is stored on an external, removable USB-A data storage to minimise downtime during data transfer on the ground. Additional preprocessing on camera is possible, as the camera has a build in dedicated GPU.
Haip BlackBird V2 VNIR Sensor
VNIR Compare
Haip BlackBird V2 VNIR Sensor
Wavelength range = 500-1000 nm
Number of bands = 100
Spectral resolution = 5 nm
Spectral sampling = 5 nm
Resolution RGB = 1800 x 1800 px
Resolution Spectral = 540 x 540 px
Field of View = HSI/RGB 33?/37?
Detector = CMOS
Sensor size = 2 Megapixel
Radiometric resolution = 10 bit
Integration time (cube) < 3 seconds
Data size (raw) = 100 MB/ Data cube
Connection = DJI Skyport 2.0 connector
Operation temperature = -10 - +50?C
Protection class = IP 40
Power consumption = 13.6 V DC / 2 A
Size = 80 x 60 x 90 mm
Data storage = 1 USB-A stick (supports 256 GB)
Weight (incl. Gimbal) = 790 g
Quick Comparison
Haip BlackBird V2 VNIR Sensor remove | HySpex SWIR-384 remove | Specim Fenix remove | Specim SWIR remove | HySpex VNIR-3000N remove | Resonon Pika IR remove | |
---|---|---|---|---|---|---|
Name | Haip BlackBird V2 VNIR Sensor remove | HySpex SWIR-384 remove | Specim Fenix remove | Specim SWIR remove | HySpex VNIR-3000N remove | Resonon Pika IR remove |
Image | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
Rating | ||||||
Content | HAIP Solutions BlackBird V2 VNIR Sensor is the easiest way to take hyperspectral images on drones. It is specifically designed for the use with DJI drones from the Matrice 200 & 300 series. The worldwide first hyperspectral Plug and Play solution for drones. Ready to fly and measure. BlackBird V2 has two separate sensors. One HSI sensor and a separate RGB camera for high quality live stream on the remote controller. The hyperspectral sensor provides a native image resolution of 540x540 pixels with 100 spectral channels, continuously covering the wavelength range from 500 nm to1000 nm. BlackBird is based on a hyperspectral line scanner, but there is no need to move the sensor during image acquisition to get a full hyperspectral data cube. The internal movement unit creates a 2D image in under 3 seconds. If needed there is also a line-scan mode, where the movement to create an image comes from the drone. These two modes can be switched directly on the remote controller. Camera control and power support works via DJIs Sky port 2.0 connector and the remote controller. Through the DJI Pilot App you get features such as remote camera trigger, RGB livestream and flight-planning support. To simplify the work even more, the first results from the camera can be viewed directly on the remote controller and, for example, the exposure can be checked. Data is stored on an external, removable USB-A data storage to minimise downtime during data transfer on the ground. Additional preprocessing on camera is possible, as the camera has a build in dedicated GPU. | HySpex SWIR-384 The HySpex SWIR-384 hyperspectral camera is developed for field, laboratory, and airborne applications. The state of the art MCT sensor with cooling down to 150K yields low background noise, high dynamic range, and exceptional SNR levels. With a max frame rate of 400 fps, combined with an aberration-corrected optical system with high optical throughput (f/2), the data quality, speed, and sensitivity is truly state of the art. A wide range of close-up lenses allows the use of the camera at working distances ranging from a few centimeters with a spatial resolution of 53 ?m to infinity e.g. airborne remote sensing. | Fenix FENIX is optimized for the most demanding geological, law enforcement, and environmental applications. In a single continuous image, FENIX spectral camera delivers the best hyperspectral data ever seen over VNIR, NIR, and SWIR wavelengths. FENIX offers extreme ruggedness and 75% reduction in size and weight compared to previous multi-sensor systems. The excellence in technical performance and physical size has been achieved through innovative and unique ?single optics dual spectrograph? design. | SWIR SWIR is a high-speed short-wave infrared hyperspectral camera that operates in the 1000-2500 nm range. It has 384 spatial pixels and achieves image rates of up to 400 frames per second using a CameraLink connection. To assure indoor/outdoor usage in varying conditions, it now has rugged weather-proof IP54 casing and temperature-stabilized optics but still uses less power than before, only 50W nominal. Its temperature-stabilized optics provide stability and sensitivity required in the most challenging near-infrared chemical imaging applications, from pharmaceutical quality assurance to food and agriculture analysis. The SWIR camera meets the highest requirements in the lab, industry, and field. | HySpex VNIR-3000 N HySpex VNIR-3000 N is developed for field, laboratory, and airborne applications. HySpex VNIR-3000 N utilizes the same spectrograph as the other classical HySpex VNIR models. With a pixel size of 3.45?m, compared to 6. 5?m for VNIR-1800, HySpex VNIR-3000 N will have less than 1.6 pixels per FWHM of the PSF spatially and less than 1.8 bands spectrally, ensuring that narrow band features will be resolved equally for all cameras. With 3000 spatial pixels, 300 bands and a noise floor of 2.4e-, HySpex VNIR-3000N will provide outstanding SNR levels in dark environments. The camera is offered with a USB connection, allowing camera operation from any computer and reducing the cost of supplementing equipment. To visualize that the camera has a wider PSF per pixel and band relative to our normal extremely sharp cameras, we have added an N for Nyquist to the model name. | Pika IR 900 - 1700 nm High-Speed Infrared The Pika IR (formerly Pika NIR-320) is a high-speed, cost-effective hyperspectral camera that covers the Near-Infrared (NIR) spectral range. It is our most popular imager for machine vision applications. The Pika IR can be used in our airborne, laboratory, and outdoor hyperspectral systems, as well as standalone or integrated into your system. |
Description | Wavelength range = 500-1000 nm Number of bands = 100 Spectral resolution = 5 nm Spectral sampling = 5 nm Resolution RGB = 1800 x 1800 px Resolution Spectral = 540 x 540 px Field of View = HSI/RGB 33?/37? Detector = CMOS Sensor size = 2 Megapixel Radiometric resolution = 10 bit Integration time (cube) < 3 seconds Data size (raw) = 100 MB/ Data cube Connection = DJI Skyport 2.0 connector Operation temperature = -10 - +50?C Protection class = IP 40 Power consumption = 13.6 V DC / 2 A Size = 80 x 60 x 90 mm Data storage = 1 USB-A stick (supports 256 GB) Weight (incl. Gimbal) = 790 g | Spectral range = 930 - 2500 nm Spatial pixels = 384 Spectral channels = 288 Spectral sampling = 5.45 nm FOV* = 16? Pixel FOV across/along* = 0.73/0.73 mrad Bit resolution = 16 bit Noise floor = 150 e- Dynamic range = 7500 Peak SNR (at full resolution) > 1100 Max speed (at full resolution) = 400 fps Power consumption = 30 W Dimensions (l-w-h) = 38 - 12- 17.5 cm Weight = 5.7 kg Camera Interface = CameraLink *Can be doubled with FOV expander | Spectral range = 1000 - 2500 nm Spectral resolution (FWHM) = 12 nm (30 ?m slit) Spectral sampling / pixel = 5.6 nm F/# = F/2.0 Slit width = 30 ?m (50 or 80 ?m optional) Effective slit length = 9.2 mmRICAL CHARACTERISTICS Sensor = Cryogenically cooled MCT detector Spatial pixels = 384 Spectral bands = 288 Pixel size = 24 x 24 ?m Detector cooling = Stirling, 25 000 h MTTF Signal-to-noise ratio = 1050:1 (at max. signal level) Camera output = 16 bit CameraLink Data cable Length = 5m Camera control = USB/RS232 Frame grabber = NI-1433 Epix grabber = E4* Frame rate = 450 fps (maximum full frame) Exposure time range = 0.1 - 20 ms Power consumption = Nominal < 50 W Input voltage = 18 - 36 VNICAL CHARACTERISTICS Size (L x W x H) = Sensor 545 x 176 x 178 mm, PSU & control unit 300 x 190 x 130 mm Weight = 14 kg & approx. 5 kg Body = Anodized aluminium with mounting screwholes Lens mount = Standard C-mount Shutter = Electro-mechanicalONMENTAL CHARACTERISTICS Storage = -20... +50 ?C Operating = +5... +40 ?C non-condensing | Spectral range = 400 - 1000 nm Spatial pixels = 3000 Spectral channels = 300 Spectral sampling = 2.0 nm FOV* = 16? Pixel FOV across/along* = 0.096/0.32 mrad Bit resolution = 12 bit Noise floor = 2.37 e- Dynamic range = 11000 Peak SNR (at full resolution) > 170 Max speed (at full resolution) = 117 fps Power consumption = 30 W Dimensions (l-w-h) = 39 - 9.9- 15 cm Weight = 5.0 kg Camera Interface = USB3 *Can be doubled with FOV expander | Spectral Range (nm) = 900 - 1700 Spectral Channels = 168 Spectral Bandwidth (nm) = 4.8 Spectral Resolution - FWHM (nm) = 8.8 Spatial Pixels = 320 Max Frame Rate (fps) = 508 f/# = 1.8 Interface = GigE Dimensions (mm) = 264 x 115 x 88 Weight, w/o lens (kg) = 2.95 |
Reviews
There are no reviews yet.