Assessing hyperspectral microscopy in real-time
The FireflEYE 185 brings hyperspectral imaging to microscopy, and also enables endoscopy. In life sciences the time-saving advantage of the snapshot technology (thanks to no-scanning) really makes itself known, as saving time saves patients. The camera can also monitor real-time processes, such as samples in petri dishes for example. The relay lens also allows for a lens change without camera re-calibration. And a close-up lens set allows a macroscopic scale view of a spot size of just a few mm.
For all scenarios
UAS Mapping – The FireflEYE 185 was the first-ever light-weight hyperspectral snapshot camera used for aerial mapping from a UAS. The user has a choice of lenses, enabling different fields of view for different tasks. In lab use the FireflEYE can be equipped with close-up lenses, allowing a macroscopic scale view with a spot size of only a few mm to cm. Attaching a relay lens to the FireflEYE provides for full interchangeability to Cmount lenses. Mount the camera on your microscope or endoscope without the need of an additional calibration. The latest improvements to the FireflEYE include upgrading the main sensor to a modern CMOS sensor. The 14-bit version has 2x higher signal-to-noise-ratio and 4x higher dynamic range compared to the S185 (needing 4 times longer integration times).
Cubert FIREFLEYE 185
VNIR Compare
Cubert FIREFLEYE 185
Spectral Range = 450 – 950 nm
Number of Bands = 125
FWHM = 8 nm @ 532 nm
Max Resolution = 1000 x 1000 pixel
Weight = Standard version: 490 g
Dimensions = Standard version: 200 x 67 x 60 mm
Technology = Multipoint Spectrometer
Sensor(s) = 5 MP & 2 MP
Spectral Sampling = 4 nm
Wavelength Error < 4 nm
Total Spectra / Image = 2500 & 1 M pansharpened
Total Data Points (Data Points / Cube) = 0.3 million
Data Depths = 12 Bit/ 14 Bit
Readout = Global shutter
Max Frame Rate = Standard version: 25 Hz
Integration Time = 0.1-1000 ms
Field of View (FOV) = 30?, 20?, 13?, 7?, lens selectable
Power Consumption = 7 W
Quick Comparison
Cubert FIREFLEYE 185 remove | Resonon Pika UV remove | Resonon Pika IR-L+ remove | HySpex Mjolnir S-620 remove | Resonon Pika IR-L remove | HySpex Baldur S-640i N remove | |
---|---|---|---|---|---|---|
Name | Cubert FIREFLEYE 185 remove | Resonon Pika UV remove | Resonon Pika IR-L+ remove | HySpex Mjolnir S-620 remove | Resonon Pika IR-L remove | HySpex Baldur S-640i N remove |
Image | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
Rating | ||||||
Content | Assessing hyperspectral microscopy in real-time The FireflEYE 185 brings hyperspectral imaging to microscopy, and also enables endoscopy. In life sciences the time-saving advantage of the snapshot technology (thanks to no-scanning) really makes itself known, as saving time saves patients. The camera can also monitor real-time processes, such as samples in petri dishes for example. The relay lens also allows for a lens change without camera re-calibration. And a close-up lens set allows a macroscopic scale view of a spot size of just a few mm. For all scenarios UAS Mapping - The FireflEYE 185 was the first-ever light-weight hyperspectral snapshot camera used for aerial mapping from a UAS. The user has a choice of lenses, enabling different fields of view for different tasks. In lab use the FireflEYE can be equipped with close-up lenses, allowing a macroscopic scale view with a spot size of only a few mm to cm. Attaching a relay lens to the FireflEYE provides for full interchangeability to Cmount lenses. Mount the camera on your microscope or endoscope without the need of an additional calibration. The latest improvements to the FireflEYE include upgrading the main sensor to a modern CMOS sensor. The 14-bit version has 2x higher signal-to-noise-ratio and 4x higher dynamic range compared to the S185 (needing 4 times longer integration times). | Pika UV 330 - 800 nm Ultraviolet + Visible The Pika UV (formerly NUV2) is a hyperspectral camera that scans the Visible and Near Ultraviolet (VIS+NUV) spectral range. An optimized objective lens provides excellent imaging throughout the entire spectral range. Because halogen lights have low output in much of the NUV, Resonon offers an NUV lighting module to augment illumination for our desktop system. The Pika UV can be used in our airborne, laboratory, and outdoor hyperspectral systems, as well as standalone or integrated into your system. | Pika IR-L+ 925 - 1700 nm Lightweight, High-Precision Infrared The Pika IR-L+ imager is a high spatial and spectral resolution Near-Infrared (925-1,700 nm) imager in a lightweight, compact format. It is well suited for field research, yet compatible with all imaging platforms (airborne, benchtop, or outdoor). For a compact, lightweight Visible light spectral range option, please see the Pika L. For higher imaging speeds, please see the Pika IR-L. | HySpex Mjolnir S-620 The HySpex Mjolnir S-620 hyperspectral imaging system for UAVs is the SWIR version of the Mjolnir camera series. Similar to the VNIR version, it provides a unique combination of small form factor and low mass, combined with high-performance specifications and scientific grade data quality. With a weight of less than 4.5 kg and less than 50 W power consumption, HySpex Mjolnir S-620 is very well suited for a wide range of UAVs. NEO offers high-performance unmanned aerial vehicles, fully integrated with the HySpex Mjolnir S-620. The UAV is fitted with a standard battery package allowing up to 30 minutes of flight time. All HySpex Mjolnir systems can also be mounted on a tripod and rotation stage for ground use. | Pika IR-L 925 - 1700 nm Lightweight Infrared The Pika IR-L is a lightweight and compact Near-Infrared (925-1,700 nm) imager. The small size and mass make it well suited for airborne applications, where it can provide invisible to the naked-eye contrast of outdoor features. For a compact, lightweight Visible light spectral range option, please see the Pika L. For a higher spectral and spatial resolution version of the Pika IR-L, please see the Pika IR-L+ imager. | HySpex Baldur S-640i N Baldur S-640i N covers the spectral range from 950-1730nm. All Baldur cameras are Nyquist cameras giving a spectral resolution of 2 spectral bands while capturing 4 times as much light as the classic systems. To ensure that the most information per framerate is provided, the spectral resolution is kept very close to 2 bands. Additionally, the spatial resolution of Baldur S-640i N is better than 1.5 pixels, yielding a very sharp camera. |
Description | Spectral Range = 450 - 950 nm Number of Bands = 125 FWHM = 8 nm @ 532 nm Max Resolution = 1000 x 1000 pixel Weight = Standard version: 490 g Dimensions = Standard version: 200 x 67 x 60 mm Technology = Multipoint Spectrometer Sensor(s) = 5 MP & 2 MP Spectral Sampling = 4 nm Wavelength Error < 4 nm Total Spectra / Image = 2500 & 1 M pansharpened Total Data Points (Data Points / Cube) = 0.3 million Data Depths = 12 Bit/ 14 Bit Readout = Global shutter Max Frame Rate = Standard version: 25 Hz Integration Time = 0.1-1000 ms Field of View (FOV) = 30?, 20?, 13?, 7?, lens selectable Power Consumption = 7 W | Spectral Range (nm) = 330 - 800 Spectral Channels = 255 Spectral Bandwidth (nm) = 1.8 Spectral Resolution - FWHM (nm) = 2.8 Spatial Pixels = 1500 Max Frame Rate (fps) = 142 f/# = 2.8 InterfaceUSB = 3.0 Dimensions (mm) = 230 x 107 x 85 Weight, w/o lens (kg) = 2.27 | Spectral Range (nm) = 925 - 1700 Spectral Channels = 470 Spectral Bandwidth (nm) = 1.7 Spectral Resolution - FWHM (nm) = 3.8 Spatial Pixels = 640 Max Frame Rate (fps) = 176 f/# = 1.8 Interface = GigE Dimensions (mm) = 210 x 68 x 63 Weight, w/o lens (kg) = 1.01 | Spectral range = 970 - 2500 nm Spatial pixels = 620 Spectral channels and sampling = 300 bands @ 5.1 nm F-number = F1.9 FOV = 20? Pixel FOV across/along = 0.54/0.54 mrad Bit resolution = 16 bit Noise floor = 80 e- Dynamic range = 10000 Peak SNR (at full resolution) > 900 Max speed (at full resolution) = 170 fps Power consumption* = 50 W Dimensions (l-w-h)* = 254 - 175 - 170 mm Weight* < 4.5 kg *Includes IMU/GPS and DAU - <5 kg including standard battery | Spectral Range (nm) = 925 - 1700 Spectral Channels = 236 Spectral Bandwidth (nm) = 3.3 Spectral Resolution - FWHM (nm) = 5.9 Spatial Pixels = 320 Max Frame Rate (fps) = 364 f/# = 1.8 Interface = GigE Dimensions (mm) = 210 x 68 x 63 Weight, w/o lens (kg) = 1.01 | Spectral Range = 950 - 1730 nm Spectral bands = 232 Max speed* = 500 fps Spectral sampling = 3.36 nm Spectral FWHM <2 bands Spatial FWHM <1.5 pixels Spatial pixels = 640 Keystone <20% of a pixel Smile <20% of band FOV = 16? / 40? Bit resolution = 12 bit Noise floor = HG:8.5/MG:32/LG:270 e- Peak SNR = HG:150/MG:275/LG:800 Dynamic range = HG:2650/MG:2360/LG:2360 ROI* = All bands can be selected/deselected individually External trigger options = LVDS, 5V/12V/24V TTL Dimensions (l-w-h) = 364 - 105 - 153 mm Camera Interface = GigE * Reducing the number of spectral channels with ROI will proportionally increase the max framerate |
Leave a Reply