Assessing hyperspectral microscopy in real-time
The FireflEYE 185 brings hyperspectral imaging to microscopy, and also enables endoscopy. In life sciences the time-saving advantage of the snapshot technology (thanks to no-scanning) really makes itself known, as saving time saves patients. The camera can also monitor real-time processes, such as samples in petri dishes for example. The relay lens also allows for a lens change without camera re-calibration. And a close-up lens set allows a macroscopic scale view of a spot size of just a few mm.
For all scenarios
UAS Mapping – The FireflEYE 185 was the first-ever light-weight hyperspectral snapshot camera used for aerial mapping from a UAS. The user has a choice of lenses, enabling different fields of view for different tasks. In lab use the FireflEYE can be equipped with close-up lenses, allowing a macroscopic scale view with a spot size of only a few mm to cm. Attaching a relay lens to the FireflEYE provides for full interchangeability to Cmount lenses. Mount the camera on your microscope or endoscope without the need of an additional calibration. The latest improvements to the FireflEYE include upgrading the main sensor to a modern CMOS sensor. The 14-bit version has 2x higher signal-to-noise-ratio and 4x higher dynamic range compared to the S185 (needing 4 times longer integration times).
Cubert FIREFLEYE 185
VNIR Compare
Cubert FIREFLEYE 185
Spectral Range = 450 – 950 nm
Number of Bands = 125
FWHM = 8 nm @ 532 nm
Max Resolution = 1000 x 1000 pixel
Weight = Standard version: 490 g
Dimensions = Standard version: 200 x 67 x 60 mm
Technology = Multipoint Spectrometer
Sensor(s) = 5 MP & 2 MP
Spectral Sampling = 4 nm
Wavelength Error < 4 nm
Total Spectra / Image = 2500 & 1 M pansharpened
Total Data Points (Data Points / Cube) = 0.3 million
Data Depths = 12 Bit/ 14 Bit
Readout = Global shutter
Max Frame Rate = Standard version: 25 Hz
Integration Time = 0.1-1000 ms
Field of View (FOV) = 30?, 20?, 13?, 7?, lens selectable
Power Consumption = 7 W
Quick Comparison
Cubert FIREFLEYE 185 remove | Resonon Pika IR+ remove | HySpex VNIR-1800 remove | Specim Fenix remove | HySpex Mjolnir S-620 remove | HySpex VS-1200 remove | |
---|---|---|---|---|---|---|
Name | Cubert FIREFLEYE 185 remove | Resonon Pika IR+ remove | HySpex VNIR-1800 remove | Specim Fenix remove | HySpex Mjolnir S-620 remove | HySpex VS-1200 remove |
Image | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
Rating | ||||||
Content | Assessing hyperspectral microscopy in real-time The FireflEYE 185 brings hyperspectral imaging to microscopy, and also enables endoscopy. In life sciences the time-saving advantage of the snapshot technology (thanks to no-scanning) really makes itself known, as saving time saves patients. The camera can also monitor real-time processes, such as samples in petri dishes for example. The relay lens also allows for a lens change without camera re-calibration. And a close-up lens set allows a macroscopic scale view of a spot size of just a few mm. For all scenarios UAS Mapping - The FireflEYE 185 was the first-ever light-weight hyperspectral snapshot camera used for aerial mapping from a UAS. The user has a choice of lenses, enabling different fields of view for different tasks. In lab use the FireflEYE can be equipped with close-up lenses, allowing a macroscopic scale view with a spot size of only a few mm to cm. Attaching a relay lens to the FireflEYE provides for full interchangeability to Cmount lenses. Mount the camera on your microscope or endoscope without the need of an additional calibration. The latest improvements to the FireflEYE include upgrading the main sensor to a modern CMOS sensor. The 14-bit version has 2x higher signal-to-noise-ratio and 4x higher dynamic range compared to the S185 (needing 4 times longer integration times). | Pika IR+ 900 - 1700 nm High-Precision Infrared The Pika IR+ (formerly Pika NIR-640) is a high-performance hyperspectral camera that covers the Near-Infrared (NIR) spectral range. It has high spatial and spectral resolutions and is often used for infrared laboratory applications. The Pika IR+ can be used in our airborne, laboratory, and outdoor hyperspectral systems, as well as standalone or integrated into your system. | HySpex VNIR-1800 The HySpex VNIR-1800 hyperspectral camera is developed for field, laboratory, and airborne applications. HySpex VNIR-1800 utilizes a cutting edge actively cooled and stabilized scientific CMOS detector. This makes VNIR-1800 the ideal camera for high-end data acquisitions where high radiometric accuracy is required. The dynamic range of 20 000 ensures outstanding SNR levels even in darker areas of an image of highly dynamic scenes. With a max frame rate of 260 fps, combined with aberration-corrected optics and high optical throughput (f/2.5), HySpex VNIR-1800 offers a unique combination of data quality, high speed, and sensitivity. A wide range of close-up lenses allows the use of the camera at working distances ranging from a few centimeters with a spatial resolution of 24 ?m to infinity e.g. airborne remote sensing. | Fenix FENIX is optimized for the most demanding geological, law enforcement, and environmental applications. In a single continuous image, FENIX spectral camera delivers the best hyperspectral data ever seen over VNIR, NIR, and SWIR wavelengths. FENIX offers extreme ruggedness and 75% reduction in size and weight compared to previous multi-sensor systems. The excellence in technical performance and physical size has been achieved through innovative and unique ?single optics dual spectrograph? design. | HySpex Mjolnir S-620 The HySpex Mjolnir S-620 hyperspectral imaging system for UAVs is the SWIR version of the Mjolnir camera series. Similar to the VNIR version, it provides a unique combination of small form factor and low mass, combined with high-performance specifications and scientific grade data quality. With a weight of less than 4.5 kg and less than 50 W power consumption, HySpex Mjolnir S-620 is very well suited for a wide range of UAVs. NEO offers high-performance unmanned aerial vehicles, fully integrated with the HySpex Mjolnir S-620. The UAV is fitted with a standard battery package allowing up to 30 minutes of flight time. All HySpex Mjolnir systems can also be mounted on a tripod and rotation stage for ground use. | HySpex VS-1200 The HySpex VS-1200 hyperspectral camera is developed for airborne applications requiring extreme resolution in both VNIR and SWIR spectral regions. The HySpex VS-1200 is a novel high-resolution instrument designed for airborne applications at altitudes greater than 400m. The camera produces the highest scientific grade level data, commercially available, having FWHM less than 1.2 pixels spatially and less than 1.5 pixels spectrally. The combined VNIR-SWIR cube has coregistration errors, and smile and keystone of less than 10% of a pixel. With 40 degrees FOV, the camera is ideal for mapping large areas with high accuracy and resolution. The camera is delivered with an integrated high-performance IMU/GPS and data acquisition unit with removable storage bays as a standard. Existing navigation systems can also be integrated/utilized. A standard passive damping solution is included as a part of the default delivery package, but mounting plates for active damping solutions, such as GSM4000 or PAV80 can be supplied. |
Description | Spectral Range = 450 - 950 nm Number of Bands = 125 FWHM = 8 nm @ 532 nm Max Resolution = 1000 x 1000 pixel Weight = Standard version: 490 g Dimensions = Standard version: 200 x 67 x 60 mm Technology = Multipoint Spectrometer Sensor(s) = 5 MP & 2 MP Spectral Sampling = 4 nm Wavelength Error < 4 nm Total Spectra / Image = 2500 & 1 M pansharpened Total Data Points (Data Points / Cube) = 0.3 million Data Depths = 12 Bit/ 14 Bit Readout = Global shutter Max Frame Rate = Standard version: 25 Hz Integration Time = 0.1-1000 ms Field of View (FOV) = 30?, 20?, 13?, 7?, lens selectable Power Consumption = 7 W | Spectral Range (nm) = 900 - 1700 Spectral Channels = 336 Spectral Bandwidth (nm) = 2.4 Spectral Resolution - FWHM (nm) = 5.6 Spatial Pixels = 640 Max Frame Rate (fps) = 240 f/# = 1.8 Interface = GigE Dimensions (mm) = 264 x 115 x 88 Weight, w/o lens (kg) = 2.95 | Spectral range = 400 - 1000 nm Spatial pixels = 1800 Spectral channels = 186 Spectral sampling = 3.26 nm FOV* = 17? Pixel FOV across/along* = 0.16/0.32 mrad Bit resolution = 16 bit Noise floor = 2.4 e- Dynamic range = 20000 Peak SNR (at full resolution) > 255 Max speed (at full resolution) = 260 fps Power consumption = 30 W Dimensions (l-w-h) = 39 - 9.9 - 15 cm Weight = 5.0 kg Camera Interface = CameraLink *Can be doubled with FOV expander | Spectral range = 970 - 2500 nm Spatial pixels = 620 Spectral channels and sampling = 300 bands @ 5.1 nm F-number = F1.9 FOV = 20? Pixel FOV across/along = 0.54/0.54 mrad Bit resolution = 16 bit Noise floor = 80 e- Dynamic range = 10000 Peak SNR (at full resolution) > 900 Max speed (at full resolution) = 170 fps Power consumption* = 50 W Dimensions (l-w-h)* = 254 - 175 - 170 mm Weight* < 4.5 kg *Includes IMU/GPS and DAU - <5 kg including standard battery |
Leave a Reply