The Hyper-Cam Airborne Mini is a revolutionary hyperspectral imaging system that is designed to fit small aircrafts and other compact vehicles. This lightweight imaging sensor is a versatile tool for hyperspectral IR surveys, and a unique instrument for real-time gas detection, identification and quantification.
Telops Hyper-Cam Mini xLW
IR Compare
Telops Hyper-Cam Mini xLW
Spectral range (?m) = 7.4 – 12.5
Detector Type = SLS
Spatial Resolution (px) = 320 x 256
Pixel Size (?m) = 30
Quick Comparison
Telops Hyper-Cam Mini xLW remove | HySpex VNIR-3000N remove | Resonon Pika IR+ remove | Resonon Pika UV remove | Resonon Pika XC2 remove | Resonon Pika IR-L remove | |
---|---|---|---|---|---|---|
Name | Telops Hyper-Cam Mini xLW remove | HySpex VNIR-3000N remove | Resonon Pika IR+ remove | Resonon Pika UV remove | Resonon Pika XC2 remove | Resonon Pika IR-L remove |
Image | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
Rating | ||||||
Content | The Hyper-Cam Airborne Mini is a revolutionary hyperspectral imaging system that is designed to fit small aircrafts and other compact vehicles. This lightweight imaging sensor is a versatile tool for hyperspectral IR surveys, and a unique instrument for real-time gas detection, identification and quantification. | HySpex VNIR-3000 N HySpex VNIR-3000 N is developed for field, laboratory, and airborne applications. HySpex VNIR-3000 N utilizes the same spectrograph as the other classical HySpex VNIR models. With a pixel size of 3.45?m, compared to 6. 5?m for VNIR-1800, HySpex VNIR-3000 N will have less than 1.6 pixels per FWHM of the PSF spatially and less than 1.8 bands spectrally, ensuring that narrow band features will be resolved equally for all cameras. With 3000 spatial pixels, 300 bands and a noise floor of 2.4e-, HySpex VNIR-3000N will provide outstanding SNR levels in dark environments. The camera is offered with a USB connection, allowing camera operation from any computer and reducing the cost of supplementing equipment. To visualize that the camera has a wider PSF per pixel and band relative to our normal extremely sharp cameras, we have added an N for Nyquist to the model name. | Pika IR+ 900 - 1700 nm High-Precision Infrared The Pika IR+ (formerly Pika NIR-640) is a high-performance hyperspectral camera that covers the Near-Infrared (NIR) spectral range. It has high spatial and spectral resolutions and is often used for infrared laboratory applications. The Pika IR+ can be used in our airborne, laboratory, and outdoor hyperspectral systems, as well as standalone or integrated into your system. | Pika UV 330 - 800 nm Ultraviolet + Visible The Pika UV (formerly NUV2) is a hyperspectral camera that scans the Visible and Near Ultraviolet (VIS+NUV) spectral range. An optimized objective lens provides excellent imaging throughout the entire spectral range. Because halogen lights have low output in much of the NUV, Resonon offers an NUV lighting module to augment illumination for our desktop system. The Pika UV can be used in our airborne, laboratory, and outdoor hyperspectral systems, as well as standalone or integrated into your system. | Pika XC2 400 - 1000 nm High-Precision VNIR The Pika XC2 is a high-resolution hyperspectral camera that covers the Visible + Near-Infrared (VNIR) spectral range. The Pika XC2 has high spatial resolution, best in-class spectral resolution, and excellent imaging quality. Popular in VNIR laboratory applications. The Pika XC2 can be used in our laboratory, and outdoor, and airborne hyperspectral systems, as well as standalone or integrated into your system. | Pika IR-L 925 - 1700 nm Lightweight Infrared The Pika IR-L is a lightweight and compact Near-Infrared (925-1,700 nm) imager. The small size and mass make it well suited for airborne applications, where it can provide invisible to the naked-eye contrast of outdoor features. For a compact, lightweight Visible light spectral range option, please see the Pika L. For a higher spectral and spatial resolution version of the Pika IR-L, please see the Pika IR-L+ imager. |
Description | Spectral range (?m) = 7.4 - 12.5 Detector Type = SLS Spatial Resolution (px) = 320 x 256 Pixel Size (?m) = 30 | Spectral range = 400 - 1000 nm Spatial pixels = 3000 Spectral channels = 300 Spectral sampling = 2.0 nm FOV* = 16? Pixel FOV across/along* = 0.096/0.32 mrad Bit resolution = 12 bit Noise floor = 2.37 e- Dynamic range = 11000 Peak SNR (at full resolution) > 170 Max speed (at full resolution) = 117 fps Power consumption = 30 W Dimensions (l-w-h) = 39 - 9.9- 15 cm Weight = 5.0 kg Camera Interface = USB3 *Can be doubled with FOV expander | Spectral Range (nm) = 900 - 1700 Spectral Channels = 336 Spectral Bandwidth (nm) = 2.4 Spectral Resolution - FWHM (nm) = 5.6 Spatial Pixels = 640 Max Frame Rate (fps) = 240 f/# = 1.8 Interface = GigE Dimensions (mm) = 264 x 115 x 88 Weight, w/o lens (kg) = 2.95 | Spectral Range (nm) = 330 - 800 Spectral Channels = 255 Spectral Bandwidth (nm) = 1.8 Spectral Resolution - FWHM (nm) = 2.8 Spatial Pixels = 1500 Max Frame Rate (fps) = 142 f/# = 2.8 InterfaceUSB = 3.0 Dimensions (mm) = 230 x 107 x 85 Weight, w/o lens (kg) = 2.27 | Spectral Range (nm) = 400 - 1000 Spectral Channels = 447 Spectral Bandwidth (nm) = 1.3 Spectral Resolution - FWHM (nm) = 1.9 Spatial Pixels = 1600 Max Frame Rate (fps) = 165 f/# = 2.4 Interface = USB 3.0 Dimensions (mm) = 265 x 106 x 75 Weight, w/o lens (kg) = 2.51 | Spectral Range (nm) = 925 - 1700 Spectral Channels = 236 Spectral Bandwidth (nm) = 3.3 Spectral Resolution - FWHM (nm) = 5.9 Spatial Pixels = 320 Max Frame Rate (fps) = 364 f/# = 1.8 Interface = GigE Dimensions (mm) = 210 x 68 x 63 Weight, w/o lens (kg) = 1.01 |
Leave a Reply