Content | Very Compact Multispectral Cameras CMS Multispetral cameras are specially designed to allow high integration of VIS/NIR multispectral systems. These lightweight (less than 75 g) and very small footprint (56x56x22mm) cameras split the image into 8 spectral bands plus 1 B&W channel. Made by hybridization of a custom Bayer-like mosaic filter on a commercial 1.3 MPixel CMOS Sensor, they allow extracting the spectrum on each point of an image. SILIOS offers three different CMS cameras (CMS-C, CMS-V and CMS-S) to address a wide spectrum of applications. | HySpex SWIR-640
The HySpex SWIR-640 hyperspectral camera is developed for field, laboratory, and airborne applications.
HySpex SWIR-640 offers high spatial resolution by using a unique MCT sensor. The FPA is cooled to 150K using a sterling cooler, yielding low background noise, high dynamic range, and exceptional SNR levels. The camera offers an aberration-corrected optical system with high optical throughput (f/2.0), the data quality, sensitivity, and resolution is truly state of the art.
A wide range of close-up lenses allows the use of the camera at working distances ranging from a few centimeters, with a spatial resolution of 32 ?m, to infinity for e.g. airborne remote sensing. | Pika IR-L
925 - 1700 nm
Lightweight Infrared
The Pika IR-L is a lightweight and compact Near-Infrared (925-1,700 nm) imager. The small size and mass make it well suited for airborne applications, where it can provide invisible to the naked-eye contrast of outdoor features.
For a compact, lightweight Visible light spectral range option, please see the Pika L.
For a higher spectral and spatial resolution version of the Pika IR-L, please see the Pika IR-L+ imager. | HySpex VNIR-1800
The HySpex VNIR-1800 hyperspectral camera is developed for field, laboratory, and airborne applications.
HySpex VNIR-1800 utilizes a cutting edge actively cooled and stabilized scientific CMOS detector. This makes VNIR-1800 the ideal camera for high-end data acquisitions where high radiometric accuracy is required. The dynamic range of 20 000 ensures outstanding SNR levels even in darker areas of an image of highly dynamic scenes. With a max frame rate of 260 fps, combined with aberration-corrected optics and high optical throughput (f/2.5), HySpex VNIR-1800 offers a unique combination of
data quality, high speed, and sensitivity. A wide range of close-up lenses allows the use of the camera at working distances ranging from a few centimeters with a spatial resolution of 24 ?m to infinity e.g. airborne remote sensing. | HySpex Baldur S-384 N
Baldur S-384 N covers the spectral range from 960-2500 nm.
All Baldur cameras are Nyquist cameras giving a spectral resolution of 2 spectral bands while capturing 4 times as much light as the classic systems. To ensure that the most information per framerate is provided, the spectral resolution is kept very close to 2 bands. Additionally, the spatial resolution of Baldur S-384 N is better than 1.5 pixels, yielding a very sharp camera. | Pika L
400 - 1000 nm
Lightweight, Compact VNIR
The Pika L is a lightweight, compact hyperspectral camera that covers the Visible + Near-Infrared (VNIR) spectral range. It is our most popular imager for remote sensing applications.
The Pika L can be used in our airborne, laboratory, and outdoor hyperspectral systems, as well as standalone or integrated into your system. |
Description | Spectral range = 550 - 830 nm
Band width (FWHM avg) = 40 nm
Macropixel configuration = 3 x 3 (8 color bands + 1 B&W)
Array type = CMOS
Optical Interface = CS-mount (C-mount compatible with additional C-ring)
Resolution (raw picture) = 1280 (H) x 1024 (V)
Resolution (spectral pictures) = 426 (H) x 339 (V)
Pixel pitch = 5.3 ?m
Maximum frame rate = 60 Hz
Exposure time range = 10 ?s to 2 s
ADC = 10-bit
Camera control = USB 3.0/ GigE
Digital output = 10-bit USB 3.0 / 10-bit GigE
Power supply = USB 3.0 External
Dimension (W x H x L) = 56 x 56 x 22 mm / 62 x 62 x 31 mm
Weight (camera head) = 100 g/ 110 g | Spectral range = 960 - 2500 nm
Spatial pixels = 640
Spectral channels = 360
Spectral sampling = 4.38 nm
FOV* = 16?
Pixel FOV across/along* = 0.44/0.44 mrad
Bit resolution = 16 bit
Noise floor = 80 e-
Dynamic range = 7500
Peak SNR (at full resolution) > 800
Max speed (at full resolution) = 235 fps
Power consumption = 10 W
Dimensions (l-w-h) = 36 - 11- 15 cm
Weight = 4.1 kg
Camera Interface = CameraLink
*Can be doubled with FOV expander | Spectral Range (nm) = 925 - 1700
Spectral Channels = 236
Spectral Bandwidth (nm) = 3.3
Spectral Resolution - FWHM (nm) = 5.9
Spatial Pixels = 320
Max Frame Rate (fps) = 364
f/# = 1.8
Interface = GigE
Dimensions (mm) = 210 x 68 x 63
Weight, w/o lens (kg) = 1.01 | Spectral range = 400 - 1000 nm
Spatial pixels = 1800
Spectral channels = 186
Spectral sampling = 3.26 nm
FOV* = 17?
Pixel FOV across/along* = 0.16/0.32 mrad
Bit resolution = 16 bit
Noise floor = 2.4 e-
Dynamic range = 20000
Peak SNR (at full resolution) > 255
Max speed (at full resolution) = 260 fps
Power consumption = 30 W
Dimensions (l-w-h) = 39 - 9.9 - 15 cm
Weight = 5.0 kg
Camera Interface = CameraLink
*Can be doubled with FOV expander | Spectral Range = 960 - 2500nm
Spectral bands = 288
Max speed* = 500 fps
Spectral sampling = 5.45 nm
Spectral FWHM <2 bands
Spatial FWHM <1.3 pixels
Spatial pixels = 384
Keystone <15% of a pixel
Smile <15% of band
FOV = 16? / 40?
Bit resolution = 16 bit
Noise floor = 150 e-
Peak SNR >1100
Dynamic range = 7500
ROI* = All bands can be selected/deselected individually
External trigger options LVDS, 5V/12V/24V TTL
Dimensions (l-w-h) = 368 - 131 - 175 mm
Camera Interface = CameraLink
* Reducing the number of spectral channels with ROI will proportionally increase the max framerate | Spectral Range (nm) = 400 - 1000
Spectral Channels = 281
Spectral Bandwidth (nm) = 2.1
Spectral Resolution - FWHM (nm) = 3.3
Spatial Pixels = 900
Max Frame Rate (fps) = 249
f/# = 2.4
Interface = USB 3.0
Dimensions (mm) = 115 x 104 x 66
Weight, w/o lens (kg) = 0.64 |
Leave a Reply