Nireos Hera Iperspettrale VIS-NIR

Nireos Hera Iperspettrale VIS-NIR

Spectral range = 400 – 1000 nm
Sensor spatial resolution = 1280 x 1024 pixels
User adjustable spectral resolution: <1.5 nm @ 400 nm/ <10 nm @ 1000 nm Sensor = CMOS Number of bits = 12 bits Software interface = Labview based interface Number of spectral bands = ?* Field of view 8 degrees** Working distance = 1 m - ? Dimensions = 205 x 150 x 83.5 mm Weight = 2 kg * HERA is FT spectroscopy based instrument and number of spectral bands is software selectable and independent from measurement time ** The Field of View can be doubled (up to 16 degrees) by adding an optional lens in front of the camera

SKU: Nireos Hera Iperspettrale VIS-NIR Category: Tag:
Compare

HERA IPERSPETTRALE is a compact and rugged camera that enables an innovative approach to spectral imaging.
With its unique and patented technology based on time-domain Fourier Transform (FT) detection, HERA provides exceptional spatial-spectral resolution and superior sensitivity in low-light illumination conditions.
HERA is based on a Fourier Transform (FT) approach: the data-cube is acquired in the time-domain, by step-scanning a compact ultra-stable interferometer in front of the CMOS sensor.
The software then automatically computes an FT at each and every pixel of the image, providing the final hyperspectral data-cube.
As a result of an FT, the spectrum at each pixel is a continuous curve, so the number of bands is virtually unlimited, not defined by the hardware.
As in any other FT techniques, the spectral resolution is not constant as a function of the wavelength. Also, the spectral resolution can be simply varied via software: at each measurement, you can decide whether to acquire a high spectral resolution-image, or – if not required – a faster and lower spectral resolution-image.
Regardless of this choice, the exceptional light throughput is not affected, thanks to the FT approach.
Thanks to the absence of aperture slits and gratings, and to the 1 cm Clear Aperture, HERA is specifically designed to provide an extremely high light throughput, making it the ideal device for low light conditions or delicate samples.

Leave a Reply

Your email address will not be published. Required fields are marked *

Got something to discuss?


 

Quick Comparison

Nireos Hera Iperspettrale VIS-NIR removeHySpex VNIR-1800 removeResonon Pika IR removeSpecim FX10 removeSpecim AFX10 removeHySpex SWIR-384 remove
NameNireos Hera Iperspettrale VIS-NIR removeHySpex VNIR-1800 removeResonon Pika IR removeSpecim FX10 removeSpecim AFX10 removeHySpex SWIR-384 remove
ImageNireos Hera Iperspettrale VIS-NIRHySpex VNIR-1800Resonon Pika IRSpecim FX10Specim AFX10HySpex SWIR-384
Rating
Rated 0 out of 5
Rated 0 out of 5
Rated 0 out of 5
Rated 0 out of 5
Rated 0 out of 5
Rated 4.67 out of 5
ContentHERA IPERSPETTRALE is a compact and rugged camera that enables an innovative approach to spectral imaging. With its unique and patented technology based on time-domain Fourier Transform (FT) detection, HERA provides exceptional spatial-spectral resolution and superior sensitivity in low-light illumination conditions. HERA is based on a Fourier Transform (FT) approach: the data-cube is acquired in the time-domain, by step-scanning a compact ultra-stable interferometer in front of the CMOS sensor. The software then automatically computes an FT at each and every pixel of the image, providing the final hyperspectral data-cube. As a result of an FT, the spectrum at each pixel is a continuous curve, so the number of bands is virtually unlimited, not defined by the hardware. As in any other FT techniques, the spectral resolution is not constant as a function of the wavelength. Also, the spectral resolution can be simply varied via software: at each measurement, you can decide whether to acquire a high spectral resolution-image, or - if not required - a faster and lower spectral resolution-image. Regardless of this choice, the exceptional light throughput is not affected, thanks to the FT approach. Thanks to the absence of aperture slits and gratings, and to the 1 cm Clear Aperture, HERA is specifically designed to provide an extremely high light throughput, making it the ideal device for low light conditions or delicate samples.HySpex VNIR-1800 The HySpex VNIR-1800 hyperspectral camera is developed for field, laboratory, and airborne applications. HySpex VNIR-1800 utilizes a cutting edge actively cooled and stabilized scientific CMOS detector. This makes VNIR-1800 the ideal camera for high-end data acquisitions where high radiometric accuracy is required. The dynamic range of 20 000 ensures outstanding SNR levels even in darker areas of an image of highly dynamic scenes. With a max frame rate of 260 fps, combined with aberration-corrected optics and high optical throughput (f/2.5), HySpex VNIR-1800 offers a unique combination of data quality, high speed, and sensitivity. A wide range of close-up lenses allows the use of the camera at working distances ranging from a few centimeters with a spatial resolution of 24 ?m to infinity e.g. airborne remote sensing.Pika IR 900 - 1700 nm High-Speed Infrared The Pika IR (formerly Pika NIR-320) is a high-speed, cost-effective hyperspectral camera that covers the Near-Infrared (NIR) spectral range. It is our most popular imager for machine vision applications. The Pika IR can be used in our airborne, laboratory, and outdoor hyperspectral systems, as well as standalone or integrated into your system.Specim FX10 Specim FX10 is a line-scan hyperspectral camera that operates in the visible and near-infrared (VNIR) region. It is an excellent tool for industrial and scientific applications. The Specim FX10 operates in the 400-1000 nm region, and the color-optimized Specim FX10c in the 400-780 nm region.Specim AFX10 Specim AFX10 is a VNIR hyperspectral imaging solution with an HSI camera, a small and powerful computer and a high-end GNSS/IMU unit in a compact enclosure that can be installed on multiple drone types.HySpex SWIR-384 The HySpex SWIR-384 hyperspectral camera is developed for field, laboratory, and airborne applications. The state of the art MCT sensor with cooling down to 150K yields low background noise, high dynamic range, and exceptional SNR levels. With a max frame rate of 400 fps, combined with an aberration-corrected optical system with high optical throughput (f/2), the data quality, speed, and sensitivity is truly state of the art. A wide range of close-up lenses allows the use of the camera at working distances ranging from a few centimeters with a spatial resolution of 53 ?m to infinity e.g. airborne remote sensing.
DescriptionSpectral range = 400 - 1000 nm Sensor spatial resolution = 1280 x 1024 pixels User adjustable spectral resolution: <1.5 nm @ 400 nm/ <10 nm @ 1000 nm Sensor = CMOS Number of bits = 12 bits Software interface = Labview based interface Number of spectral bands = ?* Field of view 8 degrees** Working distance = 1 m - ? Dimensions = 205 x 150 x 83.5 mm Weight = 2 kg * HERA is FT spectroscopy based instrument and number of spectral bands is software selectable and independent from measurement time ** The Field of View can be doubled (up to 16 degrees) by adding an optional lens in front of the cameraSpectral range = 400 - 1000 nm Spatial pixels = 1800 Spectral channels = 186 Spectral sampling = 3.26 nm FOV* = 17? Pixel FOV across/along* = 0.16/0.32 mrad Bit resolution = 16 bit Noise floor = 2.4 e- Dynamic range = 20000 Peak SNR (at full resolution) > 255 Max speed (at full resolution) = 260 fps Power consumption = 30 W Dimensions (l-w-h) = 39 - 9.9 - 15 cm Weight = 5.0 kg Camera Interface = CameraLink *Can be doubled with FOV expanderSpectral Range (nm) = 900 - 1700 Spectral Channels = 168 Spectral Bandwidth (nm) = 4.8 Spectral Resolution - FWHM (nm) = 8.8 Spatial Pixels = 320 Max Frame Rate (fps) = 508 f/# = 1.8 Interface = GigE Dimensions (mm) = 264 x 115 x 88 Weight, w/o lens (kg) = 2.95Spectral Range = 400-1000 / 400-780 (c-version) Spectral resolution (FWHM) = 5.5 nm (mean) Spectral sampling/pixel = 2.7 nm, With default binning Spectral bands = 224 / 140 (c-version), With default binning Numerical aperture = 1.7, With default lens Optics magnification = 0.80 Effective pixel size = 19.9x9.97 ?m, At fore lens image plane Effective slit width = 42 ?m, At fore lens image plane Effective slit length = 10.2 mm, At fore lens image plane SNR @ max. signal = 420 : 1 Spatial samples = 1024 Bit depth = 12 Maximum frame rate = 327 FPS full range / 514 FPS full range (c-version) Binning = 2,4,8 spectral and spatial Default: 2 spectral x 1 spatial ROI = Freely selectable multiple bands of interest. Minimum height of ROI is two 1-binned rows. Maximum frame rate is determined by the total number of rows included in the mMROI?s Pixel operability = 99.993% Image corrections = Non uniformity correction/Bad pixel replacement/Automatic Image Enhancement (AIE)/One point NUC. AIE: Unified spectral calibration + corrected smile and keystone aberrations Sensor material = CMOS Sensor cooling = Passive Full well capacity = 90 ke- Read-out modes = IWR / ITR Optics temperature = Passive Lens mount = Custom mount Fore lens FOV options = 12 deg/ 38 deg (default)/ 47 deg/ 51 deg/ 83 deg. Only the default lens is specifically designed for FX10. With other lens options, optical parameters may vary. Camera digital data output/control interface = GigE Vision, CameraLink Camera control protocols = GenICam, ASCII Power input = 12 V DC (+-10%) Power consumption = Max 4 W Connectors = Industrial Ethernet OR CameraLink 26-pin, 0.5? MDR IP = IP52 Dimensions (L x W x H) = 150 x 85 x 71 mm Mounting surface option on three sides. Mounting kit adds 24 mm distance on mounting side. Weight = 1.3 kg Storage temperature = -20 ... +50?C (non-condensing) Operating temperature = +5 ? +40?C (non-condensing) Relative humidity = 5% - 95% (non-condensing)Spectral Range = 400 - 1000 nm Spectral sampling = 2.68 nm Spectral resolution = 5.5 nm Fore lens focal length = 15 mm Field of view = 38 deg F/# = 1.7 Spectral bands = 224 Binned by 2 Spatial pixels = 1024 Spectral binning options = 2, 4, 8 Spatial binning options = 1, 2 Multiple ROI = User-selectable Maximum frame rate = 330 fps Full frame Dynamic range = 1420 SNR = 400:1 2 spectral binning, 1 spatial binning Power input = 10-30 VDC. Use separate battery or UAV/gimbal power Power consumption = 17 W Typical Connectors = ANT, DC IN, ETH GPS Antenna, Power In, Web UI / Data download Storage temperature = -20 ? +50C Operating temperature = +5 ? +40C Relative humidity = 5 - 90 %. Non-condensing Drone options = Multirotor with gimbal/ Multirotor, no gimbal/ Fixed Wing UAV. Any drone with adequate payload capacity can be used. Gimbal = Optimized for MoVI pro. Other suitable gimbals may also be used Gimbal weight = 2.2 - 2.7 kg. Typical gimbal solution Operating height = 15 - 150 m. Typical, local limitations may apply GNSS/IMU = Trimble APX-15 GPS Antenna = Trimble AV 14 Internal Memory = 512GB SSD Dimensions (W x H x L) = 131 x 152 x 202 mm Weight (without gimbal) = 2.1 kg Weight (with gimbal) = 4.8 kg. Typical gimbal solutionSpectral range = 930 - 2500 nm Spatial pixels = 384 Spectral channels = 288 Spectral sampling = 5.45 nm FOV* = 16? Pixel FOV across/along* = 0.73/0.73 mrad Bit resolution = 16 bit Noise floor = 150 e- Dynamic range = 7500 Peak SNR (at full resolution) > 1100 Max speed (at full resolution) = 400 fps Power consumption = 30 W Dimensions (l-w-h) = 38 - 12- 17.5 cm Weight = 5.7 kg Camera Interface = CameraLink *Can be doubled with FOV expander
Select the fields to be shown. Others will be hidden. Drag and drop to rearrange the order.
  • Image
  • Rating
  • Content
  • Description
Click outside to hide the comparison bar
Compare
Compare ×
Let's Compare! Continue shopping
Scroll to Top