HERA IPERSPETTRALE is a compact and rugged camera that enables an innovative approach to spectral imaging.
With its unique and patented technology based on time-domain Fourier Transform (FT) detection, HERA provides exceptional spatial-spectral resolution and superior sensitivity in low-light illumination conditions.
HERA is based on a Fourier Transform (FT) approach: the data-cube is acquired in the time-domain, by step-scanning a compact ultra-stable interferometer in front of the CMOS sensor.
The software then automatically computes an FT at each and every pixel of the image, providing the final hyperspectral data-cube.
As a result of an FT, the spectrum at each pixel is a continuous curve, so the number of bands is virtually unlimited, not defined by the hardware.
As in any other FT techniques, the spectral resolution is not constant as a function of the wavelength. Also, the spectral resolution can be simply varied via software: at each measurement, you can decide whether to acquire a high spectral resolution-image, or – if not required – a faster and lower spectral resolution-image.
Regardless of this choice, the exceptional light throughput is not affected, thanks to the FT approach.
Thanks to the absence of aperture slits and gratings, and to the 1 cm Clear Aperture, HERA is specifically designed to provide an extremely high light throughput, making it the ideal device for low light conditions or delicate samples.
Nireos Hera Iperspettrale VIS-NIR
VNIR-SWIR Compare
Nireos Hera Iperspettrale VIS-NIR
Spectral range = 400 – 1000 nm
Sensor spatial resolution = 1280 x 1024 pixels
User adjustable spectral resolution: <1.5 nm @ 400 nm/ <10 nm @ 1000 nm
Sensor = CMOS
Number of bits = 12 bits
Software interface = Labview based interface
Number of spectral bands = ?*
Field of view 8 degrees**
Working distance = 1 m - ?
Dimensions = 205 x 150 x 83.5 mm
Weight = 2 kg * HERA is FT spectroscopy based instrument and number of spectral bands is software selectable and independent from measurement time
** The Field of View can be doubled (up to 16 degrees) by adding an optional lens in front of the camera
Quick Comparison
Nireos Hera Iperspettrale VIS-NIR remove | HySpex Baldur V-1024 N remove | HySpex SWIR-384 remove | HySpex VNIR-1800 remove | Resonon Pika XC2 remove | HySpex Baldur S-384 N remove | |
---|---|---|---|---|---|---|
Name | Nireos Hera Iperspettrale VIS-NIR remove | HySpex Baldur V-1024 N remove | HySpex SWIR-384 remove | HySpex VNIR-1800 remove | Resonon Pika XC2 remove | HySpex Baldur S-384 N remove |
Image | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
Rating | ||||||
Content | HERA IPERSPETTRALE is a compact and rugged camera that enables an innovative approach to spectral imaging. With its unique and patented technology based on time-domain Fourier Transform (FT) detection, HERA provides exceptional spatial-spectral resolution and superior sensitivity in low-light illumination conditions. HERA is based on a Fourier Transform (FT) approach: the data-cube is acquired in the time-domain, by step-scanning a compact ultra-stable interferometer in front of the CMOS sensor. The software then automatically computes an FT at each and every pixel of the image, providing the final hyperspectral data-cube. As a result of an FT, the spectrum at each pixel is a continuous curve, so the number of bands is virtually unlimited, not defined by the hardware. As in any other FT techniques, the spectral resolution is not constant as a function of the wavelength. Also, the spectral resolution can be simply varied via software: at each measurement, you can decide whether to acquire a high spectral resolution-image, or - if not required - a faster and lower spectral resolution-image. Regardless of this choice, the exceptional light throughput is not affected, thanks to the FT approach. Thanks to the absence of aperture slits and gratings, and to the 1 cm Clear Aperture, HERA is specifically designed to provide an extremely high light throughput, making it the ideal device for low light conditions or delicate samples. | HySpex Baldur V-1024 N Baldur V-1024 N covers the full VNIR spectral range from 400-1000nm and is configurable within one octave in the same range. All Baldur cameras are Nyquist cameras giving a spectral resolution of 2 spectral bands while capturing 4 times as much light as the classic systems. To ensure that the most information per framerate is provided, the spectral resolution is kept very close to 2 bands. Additionally, the spatial resolution of Baldur V-1024 N is better than 1.7 pixels, yielding a very sharp camera. | HySpex SWIR-384 The HySpex SWIR-384 hyperspectral camera is developed for field, laboratory, and airborne applications. The state of the art MCT sensor with cooling down to 150K yields low background noise, high dynamic range, and exceptional SNR levels. With a max frame rate of 400 fps, combined with an aberration-corrected optical system with high optical throughput (f/2), the data quality, speed, and sensitivity is truly state of the art. A wide range of close-up lenses allows the use of the camera at working distances ranging from a few centimeters with a spatial resolution of 53 ?m to infinity e.g. airborne remote sensing. | HySpex VNIR-1800 The HySpex VNIR-1800 hyperspectral camera is developed for field, laboratory, and airborne applications. HySpex VNIR-1800 utilizes a cutting edge actively cooled and stabilized scientific CMOS detector. This makes VNIR-1800 the ideal camera for high-end data acquisitions where high radiometric accuracy is required. The dynamic range of 20 000 ensures outstanding SNR levels even in darker areas of an image of highly dynamic scenes. With a max frame rate of 260 fps, combined with aberration-corrected optics and high optical throughput (f/2.5), HySpex VNIR-1800 offers a unique combination of data quality, high speed, and sensitivity. A wide range of close-up lenses allows the use of the camera at working distances ranging from a few centimeters with a spatial resolution of 24 ?m to infinity e.g. airborne remote sensing. | Pika XC2 400 - 1000 nm High-Precision VNIR The Pika XC2 is a high-resolution hyperspectral camera that covers the Visible + Near-Infrared (VNIR) spectral range. The Pika XC2 has high spatial resolution, best in-class spectral resolution, and excellent imaging quality. Popular in VNIR laboratory applications. The Pika XC2 can be used in our laboratory, and outdoor, and airborne hyperspectral systems, as well as standalone or integrated into your system. | HySpex Baldur S-384 N Baldur S-384 N covers the spectral range from 960-2500 nm. All Baldur cameras are Nyquist cameras giving a spectral resolution of 2 spectral bands while capturing 4 times as much light as the classic systems. To ensure that the most information per framerate is provided, the spectral resolution is kept very close to 2 bands. Additionally, the spatial resolution of Baldur S-384 N is better than 1.5 pixels, yielding a very sharp camera. |
Description | Spectral range = 400 - 1000 nm Sensor spatial resolution = 1280 x 1024 pixels User adjustable spectral resolution: <1.5 nm @ 400 nm/ <10 nm @ 1000 nm Sensor = CMOS Number of bits = 12 bits Software interface = Labview based interface Number of spectral bands = ?* Field of view 8 degrees** Working distance = 1 m - ? Dimensions = 205 x 150 x 83.5 mm Weight = 2 kg * HERA is FT spectroscopy based instrument and number of spectral bands is software selectable and independent from measurement time ** The Field of View can be doubled (up to 16 degrees) by adding an optional lens in front of the camera | Spectral Range = 400-800/485-960/400-1000 nm Spatial pixels = 1024 Spectral bands = 72/88/106 Max speed* = 1000/800/700 fps Spectral sampling = 5.5 nm Spectral FWHM <2 bands? Spatial FWHM < 1.7 pixels Keystone <15% of a pixel Smile <15% of band FOV = 16? / 40? Bit resolution = 12 Noise floor = 11e Peak SNR >286 Dynamic range = 2560 ROI* = 8 independent ROIs Dimensions (l-w-h) = 316 - 105 - 153 mm Camera Interface = CameraLink * Reducing the number of spectral channels with ROI will proportionally increase the max framerate | Spectral range = 930 - 2500 nm Spatial pixels = 384 Spectral channels = 288 Spectral sampling = 5.45 nm FOV* = 16? Pixel FOV across/along* = 0.73/0.73 mrad Bit resolution = 16 bit Noise floor = 150 e- Dynamic range = 7500 Peak SNR (at full resolution) > 1100 Max speed (at full resolution) = 400 fps Power consumption = 30 W Dimensions (l-w-h) = 38 - 12- 17.5 cm Weight = 5.7 kg Camera Interface = CameraLink *Can be doubled with FOV expander | Spectral range = 400 - 1000 nm Spatial pixels = 1800 Spectral channels = 186 Spectral sampling = 3.26 nm FOV* = 17? Pixel FOV across/along* = 0.16/0.32 mrad Bit resolution = 16 bit Noise floor = 2.4 e- Dynamic range = 20000 Peak SNR (at full resolution) > 255 Max speed (at full resolution) = 260 fps Power consumption = 30 W Dimensions (l-w-h) = 39 - 9.9 - 15 cm Weight = 5.0 kg Camera Interface = CameraLink *Can be doubled with FOV expander | Spectral Range (nm) = 400 - 1000 Spectral Channels = 447 Spectral Bandwidth (nm) = 1.3 Spectral Resolution - FWHM (nm) = 1.9 Spatial Pixels = 1600 Max Frame Rate (fps) = 165 f/# = 2.4 Interface = USB 3.0 Dimensions (mm) = 265 x 106 x 75 Weight, w/o lens (kg) = 2.51 | Spectral Range = 960 - 2500nm Spectral bands = 288 Max speed* = 500 fps Spectral sampling = 5.45 nm Spectral FWHM <2 bands Spatial FWHM <1.3 pixels Spatial pixels = 384 Keystone <15% of a pixel Smile <15% of band FOV = 16? / 40? Bit resolution = 16 bit Noise floor = 150 e- Peak SNR >1100 Dynamic range = 7500 ROI* = All bands can be selected/deselected individually External trigger options LVDS, 5V/12V/24V TTL Dimensions (l-w-h) = 368 - 131 - 175 mm Camera Interface = CameraLink * Reducing the number of spectral channels with ROI will proportionally increase the max framerate |
Leave a Reply