Hinalea VNIR 4250

Hinalea VNIR 4250

Spectral range = 400-1000 nm
Spectral bands = 300 nominal
Spectral resolution = 4 nm (FWHM)
Dynamic range = User selectable 8 or 16 bit
Standard lens = 15? Field of View (FOV) – 150 mm to ?/ 30? Field of View (FOV) – 150 mm to ?
Input voltage = 110 VAC at 60Hz / 220 VAC at 50Hz
Data interfaces = USB 2.0, 3.0
Operating temperature = 15? to 45? C
Humidity = 65% non-condensing
Sensor spatial resolution = 2.3 MP *
Illumination = Optional
Dimensions (L x W x H) = 197.7 mm x 81 mm x 78 mm.15? FOV lens adds 45.5mm when focused at infinity/ 30? FOV lens adds 130.7mm when focused at infinity
Weight = 1.25 kg
* RGGB sensor; effective monochromatic equivalent 588,544 pixels without de-mosaicing

SKU: Hinalea VNIR 4250 Category: Tag:
Compare

HinaLea?s 4250 VNIR system represents the next generation of intelligent hyperspectral imagers. Based on
front-staring Fabry Perot technology, the 4250 includes
hardware and software required to support a broad range of
hyperspectral imaging applications. A tunable filter that sequentially selects spectral bands is placed in front of the sensor
and generates the hyper-cube by collecting complete images at
each spectral band-pass.
The 4250 captures a complete high-spatial-resolution image
data-cube across the visible to near infrared spectral range at 4
nm resolution in seconds, but can also be programmed to scan
a subset of bands. This subset can be dynamically controlled
based on the application and object to be imaged.
Thanks to its design, the HinaLea 4250 offers high spectral
and spatial resolution without the image uniformity challenges
that line-scanning hyperspectral and patterned filter snapshot
multi-spectral imagers present. In addition, HinaLea has developed its hyperspectral technology to be small, lightweight, and
affordable for straightforward deployment in a lab setting, in a
production environment, or in the field.

Leave a Reply

Your email address will not be published. Required fields are marked *

Got something to discuss?


 

Quick Comparison

Hinalea VNIR 4250 removeSpecim FX50 removeHySpex Baldur S-640i N removeHySpex Baldur V-1024 N removeResonon Pika L removeSpecim FX10+ remove
NameHinalea VNIR 4250 removeSpecim FX50 removeHySpex Baldur S-640i N removeHySpex Baldur V-1024 N removeResonon Pika L removeSpecim FX10+ remove
ImageHinalea VNIR 4250Specim FX50HySpex Baldur S-640i NHySpex Baldur V-1024 NResonon Pika LSpecim FX10+
Rating
Rated 0 out of 5
Rated 0 out of 5
Rated 0 out of 5
Rated 0 out of 5
Rated 0 out of 5
Rated 0 out of 5
ContentHinaLea?s 4250 VNIR system represents the next generation of intelligent hyperspectral imagers. Based on front-staring Fabry Perot technology, the 4250 includes hardware and software required to support a broad range of hyperspectral imaging applications. A tunable filter that sequentially selects spectral bands is placed in front of the sensor and generates the hyper-cube by collecting complete images at each spectral band-pass. The 4250 captures a complete high-spatial-resolution image data-cube across the visible to near infrared spectral range at 4 nm resolution in seconds, but can also be programmed to scan a subset of bands. This subset can be dynamically controlled based on the application and object to be imaged. Thanks to its design, the HinaLea 4250 offers high spectral and spatial resolution without the image uniformity challenges that line-scanning hyperspectral and patterned filter snapshot multi-spectral imagers present. In addition, HinaLea has developed its hyperspectral technology to be small, lightweight, and affordable for straightforward deployment in a lab setting, in a production environment, or in the field.Specim FX50 Specim FX50 is the only hyperspectral camera on the market covering the full mid-wave infrared (MWIR) spectral range of 2.7 - 5.3 ?m required, for example, in black plastics sorting. Specim FX50 is a high-speed, accurate, and efficient line-scan hyperspectral camera designed specifically for industrial environments.HySpex Baldur S-640i N Baldur S-640i N covers the spectral range from 950-1730nm. All Baldur cameras are Nyquist cameras giving a spectral resolution of 2 spectral bands while capturing 4 times as much light as the classic systems. To ensure that the most information per framerate is provided, the spectral resolution is kept very close to 2 bands. Additionally, the spatial resolution of Baldur S-640i N is better than 1.5 pixels, yielding a very sharp camera.HySpex Baldur V-1024 N Baldur V-1024 N covers the full VNIR spectral range from 400-1000nm and is configurable within one octave in the same range. All Baldur cameras are Nyquist cameras giving a spectral resolution of 2 spectral bands while capturing 4 times as much light as the classic systems. To ensure that the most information per framerate is provided, the spectral resolution is kept very close to 2 bands. Additionally, the spatial resolution of Baldur V-1024 N is better than 1.7 pixels, yielding a very sharp camera.Pika L 400 - 1000 nm Lightweight, Compact VNIR The Pika L is a lightweight, compact hyperspectral camera that covers the Visible + Near-Infrared (VNIR) spectral range. It is our most popular imager for remote sensing applications. The Pika L can be used in our airborne, laboratory, and outdoor hyperspectral systems, as well as standalone or integrated into your system.Specim FX10+ The Specim FX10+ is a high-speed line-scan hyperspectral camera optimized for applications requiring fast imaging. Its high resolution ensures accurate and detailed imaging at a rapid pace. Specim FX10+ operates in the visible and near-infrared (VNIR) region from 400 to 1000 nm.
DescriptionSpectral range = 400-1000 nm Spectral bands = 300 nominal Spectral resolution = 4 nm (FWHM) Dynamic range = User selectable 8 or 16 bit Standard lens = 15? Field of View (FOV) - 150 mm to ?/ 30? Field of View (FOV) - 150 mm to ? Input voltage = 110 VAC at 60Hz / 220 VAC at 50Hz Data interfaces = USB 2.0, 3.0 Operating temperature = 15? to 45? C Humidity = 65% non-condensing Sensor spatial resolution = 2.3 MP * Illumination = Optional Dimensions (L x W x H) = 197.7 mm x 81 mm x 78 mm.15? FOV lens adds 45.5mm when focused at infinity/ 30? FOV lens adds 130.7mm when focused at infinity Weight = 1.25 kg * RGGB sensor; effective monochromatic equivalent 588,544 pixels without de-mosaicingSpectral Range = 2.7 - 5.3 ?m Spectral resolution (FWHM) = 35 nm Spectral sampling/pixel = 8.44 nm, Without binning Spectral bands = 154, With default binning Numerical aperture = 2.0 Optics magnification = 0.5 Effective pixel size = 30 ?m, At fore lens image plane Effective slit width = 104 ?m, At fore lens image plane Effective slit length = 19.2 mm, At fore lens image plane Dynamic Range = 1600:1 with 1.5 ms exposure time Usable dynamic range / noise Spatial samples = 640 Bit depth = 16 Maximum frame rate = 380 fps, Full image with default binning Binning = 1,2,4 spectral and spatial, Default: 2 spectral x 1 spatial ROI = Freely selectable multiple bands of interest. Minimum height of ROI is two 1-binned rows. Maximum frame rate is determined by total number of rows between first row of first mROI and last row of last mROI - not the total number of rows included in the mMROI?s. Pixel operability = Number of operable pixels >99.7%. Allowed clusters: Size 4-8 pixels: <= 12/ Size 9-12 pixels: 2/ Size 13-19 pixels: 1/ Size >19 pixels: 0 Image corrections = Non uniformity correction/Bad pixel replacement/Automatic Image Enhancement (AIE). One point NUC. AIE: Unified spectral calibration + corrected smile and keystone aberrations Sensor material = InSb Integrated cooler = Stirling Up to 10000 hours Full well capacity = 5.1 Me- Read-out modes = IWR / ITR Optics temperature = TEC-stabilized Default is 20 degrees Celsius Lens mount = Custom mount Fore lens options = OLEM43, OLEM23, OLEM17 Field of view = 24 deg, 45 deg, 60 deg Camera digital data output/control interface = GigE Vision, Custom ethernet Camera control protocols = GenICam, JSON-RPC Power input = 24 V DC Power consumption = Max 90 W, Typical 40 W, During simultaneous cool-down of optics and detector Connectors = Ethernet/ Aux - 0306423 (09-0428-90-08) Binder 8pin/ Power - 0306627 (LF10WBR-4P) Hirose 4pin Trigger in IP = IP40 Dimensions (L x W x H) = 280 x 202 x 169 mm Mounting surface option on three sides. Mounting kit adds 24 mm distance on mounting side. Weight = 7 kg Storage temperature = -20 ... +50 oC Operating temperature = +5 ... +40 oC Relative humidity = 5% - 95% (non-condensing)Spectral Range = 950 - 1730 nm Spectral bands = 232 Max speed* = 500 fps Spectral sampling = 3.36 nm Spectral FWHM <2 bands Spatial FWHM <1.5 pixels Spatial pixels = 640 Keystone <20% of a pixel Smile <20% of band FOV = 16? / 40? Bit resolution = 12 bit Noise floor = HG:8.5/MG:32/LG:270 e- Peak SNR = HG:150/MG:275/LG:800 Dynamic range = HG:2650/MG:2360/LG:2360 ROI* = All bands can be selected/deselected individually External trigger options = LVDS, 5V/12V/24V TTL Dimensions (l-w-h) = 364 - 105 - 153 mm Camera Interface = GigE * Reducing the number of spectral channels with ROI will proportionally increase the max framerateSpectral Range = 400-800/485-960/400-1000 nm Spatial pixels = 1024 Spectral bands = 72/88/106 Max speed* = 1000/800/700 fps Spectral sampling = 5.5 nm Spectral FWHM <2 bands? Spatial FWHM < 1.7 pixels Keystone <15% of a pixel Smile <15% of band FOV = 16? / 40? Bit resolution = 12 Noise floor = 11e Peak SNR >286 Dynamic range = 2560 ROI* = 8 independent ROIs Dimensions (l-w-h) = 316 - 105 - 153 mm Camera Interface = CameraLink * Reducing the number of spectral channels with ROI will proportionally increase the max framerateSpectral Range (nm) = 400 - 1000 Spectral Channels = 281 Spectral Bandwidth (nm) = 2.1 Spectral Resolution - FWHM (nm) = 3.3 Spatial Pixels = 900 Max Frame Rate (fps) = 249 f/# = 2.4 Interface = USB 3.0 Dimensions (mm) = 115 x 104 x 66 Weight, w/o lens (kg) = 0.64Spectral Range = 400-1000 nm Spectral resolution (FWHM) = 15 nm, Typical mean Spectral sampling/pixel = 6.3 nm, With default binning Spectral bands = 100, With default binning Numerical aperture = 1.7, With default lens Optics magnification = 0.80 Effective pixel size = 19.9x9.97 ?m, At fore lens image plane Effective slit width = 42 ?m, At fore lens image plane Effective slit length = 10.2 mm, At fore lens image plane SNR @ max. signal = 420 : 1 Spatial samples = 1024 Bit depth = 12 Maximum frame rate = 705 FPS full range. With 2-spectral binning (Bands: Max FPS) = 1:9900/5:6500/20:2800/35:1813/70:985 Binning = 2,4,8 spectral and spatial, Default: 2 spectral x 1 spatial ROI = Freely selectable multiple bands of interest, Minimum height of ROI is two 1-binned rows. Maximum frame rate is determined by the total number of rows included in the mMROI?s Pixel operability = 99.993% Image corrections = Non uniformity correction/Bad pixel replacement/Automatic Image Enhancement (AIE). AIE: Unified spectral calibration + corrected smile and keystone aberrations. One point NUC Sensor material = CMOS Sensor cooling = Passive Full well capacity = 90 ke- Read-out modes = IWR / ITR Optics temperature = Passive Lens mount = Custom mount Fore lens FOV options:12 deg/38 deg (default)/47 deg/51 deg/83 deg. Only the default lens is specifically designed for FX10. With other lens options, optical parameters may vary. Camera digital data output/control interface = GigE Vision Camera control protocols = GenICam, ASCII Power input = 12 V DC (+-10%) Power consumption = Max 4 W Connectors = Industrial Ethernet IP = IP52 Dimensions (L x W x H) 150 x 85 x 71 mm Mounting surface option on three sides. Mounting kit adds 24 mm distance on mounting side. Weight 1.3 kg Storage temperature = -20 ... +50?C (non-condensing) Operating temperature = +5 ? +40?C (non-condensing) Relative humidity = 5% - 95% (non-condensing)
Select the fields to be shown. Others will be hidden. Drag and drop to rearrange the order.
  • Image
  • Rating
  • Content
  • Description
Click outside to hide the comparison bar
Compare
Compare ×
Let's Compare! Continue shopping
Scroll to Top