Hinalea VNIR 4250

Hinalea VNIR 4250

Spectral range = 400-1000 nm
Spectral bands = 300 nominal
Spectral resolution = 4 nm (FWHM)
Dynamic range = User selectable 8 or 16 bit
Standard lens = 15? Field of View (FOV) – 150 mm to ?/ 30? Field of View (FOV) – 150 mm to ?
Input voltage = 110 VAC at 60Hz / 220 VAC at 50Hz
Data interfaces = USB 2.0, 3.0
Operating temperature = 15? to 45? C
Humidity = 65% non-condensing
Sensor spatial resolution = 2.3 MP *
Illumination = Optional
Dimensions (L x W x H) = 197.7 mm x 81 mm x 78 mm.15? FOV lens adds 45.5mm when focused at infinity/ 30? FOV lens adds 130.7mm when focused at infinity
Weight = 1.25 kg
* RGGB sensor; effective monochromatic equivalent 588,544 pixels without de-mosaicing

SKU: Hinalea VNIR 4250 Category: Tag:
Compare

HinaLea?s 4250 VNIR system represents the next generation of intelligent hyperspectral imagers. Based on
front-staring Fabry Perot technology, the 4250 includes
hardware and software required to support a broad range of
hyperspectral imaging applications. A tunable filter that sequentially selects spectral bands is placed in front of the sensor
and generates the hyper-cube by collecting complete images at
each spectral band-pass.
The 4250 captures a complete high-spatial-resolution image
data-cube across the visible to near infrared spectral range at 4
nm resolution in seconds, but can also be programmed to scan
a subset of bands. This subset can be dynamically controlled
based on the application and object to be imaged.
Thanks to its design, the HinaLea 4250 offers high spectral
and spatial resolution without the image uniformity challenges
that line-scanning hyperspectral and patterned filter snapshot
multi-spectral imagers present. In addition, HinaLea has developed its hyperspectral technology to be small, lightweight, and
affordable for straightforward deployment in a lab setting, in a
production environment, or in the field.

Reviews

There are no reviews yet.

Be the first to review “Hinalea VNIR 4250”

Your email address will not be published. Required fields are marked *

Got something to discuss?


 

Quick Comparison

Hinalea VNIR 4250 removeResonon Pika XC2 removeHySpex VNIR-3000N removeHySpex VNIR-1800 removeHySpex Mjolnir S-620 removeHySpex Mjolnir VS-620 remove
NameHinalea VNIR 4250 removeResonon Pika XC2 removeHySpex VNIR-3000N removeHySpex VNIR-1800 removeHySpex Mjolnir S-620 removeHySpex Mjolnir VS-620 remove
Image
Rating
Rated 0 out of 5
Rated 4.33 out of 5
Rated 0 out of 5
Rated 0 out of 5
Rated 0 out of 5
Rated 0 out of 5
ContentHinaLea?s 4250 VNIR system represents the next generation of intelligent hyperspectral imagers. Based on front-staring Fabry Perot technology, the 4250 includes hardware and software required to support a broad range of hyperspectral imaging applications. A tunable filter that sequentially selects spectral bands is placed in front of the sensor and generates the hyper-cube by collecting complete images at each spectral band-pass. The 4250 captures a complete high-spatial-resolution image data-cube across the visible to near infrared spectral range at 4 nm resolution in seconds, but can also be programmed to scan a subset of bands. This subset can be dynamically controlled based on the application and object to be imaged. Thanks to its design, the HinaLea 4250 offers high spectral and spatial resolution without the image uniformity challenges that line-scanning hyperspectral and patterned filter snapshot multi-spectral imagers present. In addition, HinaLea has developed its hyperspectral technology to be small, lightweight, and affordable for straightforward deployment in a lab setting, in a production environment, or in the field.Pika XC2 400 - 1000 nm High-Precision VNIR The Pika XC2 is a high-resolution hyperspectral camera that covers the Visible + Near-Infrared (VNIR) spectral range. The Pika XC2 has high spatial resolution, best in-class spectral resolution, and excellent imaging quality. Popular in VNIR laboratory applications. The Pika XC2 can be used in our laboratory, and outdoor, and airborne hyperspectral systems, as well as standalone or integrated into your system.HySpex VNIR-3000 N HySpex VNIR-3000 N is developed for field, laboratory, and airborne applications. HySpex VNIR-3000 N utilizes the same spectrograph as the other classical HySpex VNIR models. With a pixel size of 3.45?m, compared to 6. 5?m for VNIR-1800, HySpex VNIR-3000 N will have less than 1.6 pixels per FWHM of the PSF spatially and less than 1.8 bands spectrally, ensuring that narrow band features will be resolved equally for all cameras. With 3000 spatial pixels, 300 bands and a noise floor of 2.4e-, HySpex VNIR-3000N will provide outstanding SNR levels in dark environments. The camera is offered with a USB connection, allowing camera operation from any computer and reducing the cost of supplementing equipment. To visualize that the camera has a wider PSF per pixel and band relative to our normal extremely sharp cameras, we have added an N for Nyquist to the model name.HySpex VNIR-1800 The HySpex VNIR-1800 hyperspectral camera is developed for field, laboratory, and airborne applications. HySpex VNIR-1800 utilizes a cutting edge actively cooled and stabilized scientific CMOS detector. This makes VNIR-1800 the ideal camera for high-end data acquisitions where high radiometric accuracy is required. The dynamic range of 20 000 ensures outstanding SNR levels even in darker areas of an image of highly dynamic scenes. With a max frame rate of 260 fps, combined with aberration-corrected optics and high optical throughput (f/2.5), HySpex VNIR-1800 offers a unique combination of data quality, high speed, and sensitivity. A wide range of close-up lenses allows the use of the camera at working distances ranging from a few centimeters with a spatial resolution of 24 ?m to infinity e.g. airborne remote sensing.HySpex Mjolnir S-620 The HySpex Mjolnir S-620 hyperspectral imaging system for UAVs is the SWIR version of the Mjolnir camera series. Similar to the VNIR version, it provides a unique combination of small form factor and low mass, combined with high-performance specifications and scientific grade data quality. With a weight of less than 4.5 kg and less than 50 W power consumption, HySpex Mjolnir S-620 is very well suited for a wide range of UAVs. NEO offers high-performance unmanned aerial vehicles, fully integrated with the HySpex Mjolnir S-620. The UAV is fitted with a standard battery package allowing up to 30 minutes of flight time. All HySpex Mjolnir systems can also be mounted on a tripod and rotation stage for ground use.HySpex Mjolnir VS-620 For applications requiring low mass, combined with high-performance specifications and scientific grade data quality on the full VNIR-SWIR range, HySpex Mjolnir VS-620 is an ideal solution. Sharing the onboard data acquisition unit and navigation system, HySpex Mjolnir VS-620 is both space-efficient and cost-effective. The VNIR and SWIR optical axis are coaligned in the along-track direction, assuring perfect coregistration in the flight direction. In addition to the high-quality hyperspectral data cube, covering the spectral range from 400 - 2500 nm, with 490 bands, double resolution data in the VNIR range is always readily available. With smile and keystone less than 0.1 pixels for each spectral range, the merged Mjolnir VS-620 data product will have coregistration/keystone better than 0.2 pixels for the full VNIR-SWIR range.
DescriptionSpectral range = 400-1000 nm Spectral bands = 300 nominal Spectral resolution = 4 nm (FWHM) Dynamic range = User selectable 8 or 16 bit Standard lens = 15? Field of View (FOV) - 150 mm to ?/ 30? Field of View (FOV) - 150 mm to ? Input voltage = 110 VAC at 60Hz / 220 VAC at 50Hz Data interfaces = USB 2.0, 3.0 Operating temperature = 15? to 45? C Humidity = 65% non-condensing Sensor spatial resolution = 2.3 MP * Illumination = Optional Dimensions (L x W x H) = 197.7 mm x 81 mm x 78 mm.15? FOV lens adds 45.5mm when focused at infinity/ 30? FOV lens adds 130.7mm when focused at infinity Weight = 1.25 kg * RGGB sensor; effective monochromatic equivalent 588,544 pixels without de-mosaicingSpectral Range (nm) = 400 - 1000 Spectral Channels = 447 Spectral Bandwidth (nm) = 1.3 Spectral Resolution - FWHM (nm) = 1.9 Spatial Pixels = 1600 Max Frame Rate (fps) = 165 f/# = 2.4 Interface = USB 3.0 Dimensions (mm) = 265 x 106 x 75 Weight, w/o lens (kg) = 2.51Spectral range = 400 - 1000 nm Spatial pixels = 3000 Spectral channels = 300 Spectral sampling = 2.0 nm FOV* = 16? Pixel FOV across/along* = 0.096/0.32 mrad Bit resolution = 12 bit Noise floor = 2.37 e- Dynamic range = 11000 Peak SNR (at full resolution) > 170 Max speed (at full resolution) = 117 fps Power consumption = 30 W Dimensions (l-w-h) = 39 - 9.9- 15 cm Weight = 5.0 kg Camera Interface = USB3 *Can be doubled with FOV expanderSpectral range = 400 - 1000 nm Spatial pixels = 1800 Spectral channels = 186 Spectral sampling = 3.26 nm FOV* = 17? Pixel FOV across/along* = 0.16/0.32 mrad Bit resolution = 16 bit Noise floor = 2.4 e- Dynamic range = 20000 Peak SNR (at full resolution) > 255 Max speed (at full resolution) = 260 fps Power consumption = 30 W Dimensions (l-w-h) = 39 - 9.9 - 15 cm Weight = 5.0 kg Camera Interface = CameraLink *Can be doubled with FOV expanderSpectral range = 970 - 2500 nm Spatial pixels = 620 Spectral channels and sampling = 300 bands @ 5.1 nm F-number = F1.9 FOV = 20? Pixel FOV across/along = 0.54/0.54 mrad Bit resolution = 16 bit Noise floor = 80 e- Dynamic range = 10000 Peak SNR (at full resolution) > 900 Max speed (at full resolution) = 170 fps Power consumption* = 50 W Dimensions (l-w-h)* = 254 - 175 - 170 mm Weight* < 4.5 kg *Includes IMU/GPS and DAU - <5 kg including standard battery
Select the fields to be shown. Others will be hidden. Drag and drop to rearrange the order.
  • Image
  • Rating
  • Content
  • Description
Click outside to hide the comparison bar
Compare
Compare ×
Let's Compare! Continue shopping
Scroll to Top