World?s lightest HSI camera
BlackBullet V2 is based on a hyperspectral linescanner, but there is no need to move the sensor during image acquisition to get a full hyperspectral data cube. With this feature your use case can benefit from a compact and lightweight measuring setup. The BlackBullet V2 camera was especially designed for UAV implementation with its lightweight design, but of course there is a multitude of other applications. A mounting plate with different type of threads is delivered with the camera to mount it whereever needed. Camera control works via Gigabit Ethernet, which opens up to a wide range of mounting options.
The desired spectral ranges can be individually selected. Additional pre-processing on camera is possible, as the camera has a build in NVIDIA Jetson GPU. BlackBullet is optimised for combined use with seperate available broadband LED lighting unit BlackBright
Haip BlackBullet V2
VNIR Compare
Haip BlackBullet V2
Wavelength range = 500-1000 nm
Number of bands = 250
Spectral resolution = 5 nm
Spectral sampling = 2 nm
Resolution RGB = 2688 * 1512 px
Resolution Spectral = 540 x 540 px
Field of View – HSI/RGB = 33?/37?
Detector = CMOS
Sensor size = 2 Megapixel
Radiometric resolution = 10 bit
Integration time (cube) < 3 seconds
Data size (raw) = 100 MB/ Data cube
Connection = GigE
Operation temperature = -10 - +50?C
Protection class = IP 40
Power consumption = 100-240 V DC / 15 W
Size =80 x 60 x 90 mm
Weight = 630 g
Quick Comparison
Haip BlackBullet V2 remove | HySpex Baldur V-1024 N remove | HySpex Mjolnir S-620 remove | Resonon Pika XC2 remove | Specim Fenix remove | HySpex VS-1200 remove | |
---|---|---|---|---|---|---|
Name | Haip BlackBullet V2 remove | HySpex Baldur V-1024 N remove | HySpex Mjolnir S-620 remove | Resonon Pika XC2 remove | Specim Fenix remove | HySpex VS-1200 remove |
Image | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
Rating | ||||||
Content | World?s lightest HSI camera BlackBullet V2 is based on a hyperspectral linescanner, but there is no need to move the sensor during image acquisition to get a full hyperspectral data cube. With this feature your use case can benefit from a compact and lightweight measuring setup. The BlackBullet V2 camera was especially designed for UAV implementation with its lightweight design, but of course there is a multitude of other applications. A mounting plate with different type of threads is delivered with the camera to mount it whereever needed. Camera control works via Gigabit Ethernet, which opens up to a wide range of mounting options. The desired spectral ranges can be individually selected. Additional pre-processing on camera is possible, as the camera has a build in NVIDIA Jetson GPU. BlackBullet is optimised for combined use with seperate available broadband LED lighting unit BlackBright | HySpex Baldur V-1024 N Baldur V-1024 N covers the full VNIR spectral range from 400-1000nm and is configurable within one octave in the same range. All Baldur cameras are Nyquist cameras giving a spectral resolution of 2 spectral bands while capturing 4 times as much light as the classic systems. To ensure that the most information per framerate is provided, the spectral resolution is kept very close to 2 bands. Additionally, the spatial resolution of Baldur V-1024 N is better than 1.7 pixels, yielding a very sharp camera. | HySpex Mjolnir S-620 The HySpex Mjolnir S-620 hyperspectral imaging system for UAVs is the SWIR version of the Mjolnir camera series. Similar to the VNIR version, it provides a unique combination of small form factor and low mass, combined with high-performance specifications and scientific grade data quality. With a weight of less than 4.5 kg and less than 50 W power consumption, HySpex Mjolnir S-620 is very well suited for a wide range of UAVs. NEO offers high-performance unmanned aerial vehicles, fully integrated with the HySpex Mjolnir S-620. The UAV is fitted with a standard battery package allowing up to 30 minutes of flight time. All HySpex Mjolnir systems can also be mounted on a tripod and rotation stage for ground use. | Pika XC2 400 - 1000 nm High-Precision VNIR The Pika XC2 is a high-resolution hyperspectral camera that covers the Visible + Near-Infrared (VNIR) spectral range. The Pika XC2 has high spatial resolution, best in-class spectral resolution, and excellent imaging quality. Popular in VNIR laboratory applications. The Pika XC2 can be used in our laboratory, and outdoor, and airborne hyperspectral systems, as well as standalone or integrated into your system. | Fenix FENIX is optimized for the most demanding geological, law enforcement, and environmental applications. In a single continuous image, FENIX spectral camera delivers the best hyperspectral data ever seen over VNIR, NIR, and SWIR wavelengths. FENIX offers extreme ruggedness and 75% reduction in size and weight compared to previous multi-sensor systems. The excellence in technical performance and physical size has been achieved through innovative and unique ?single optics dual spectrograph? design. | HySpex VS-1200 The HySpex VS-1200 hyperspectral camera is developed for airborne applications requiring extreme resolution in both VNIR and SWIR spectral regions. The HySpex VS-1200 is a novel high-resolution instrument designed for airborne applications at altitudes greater than 400m. The camera produces the highest scientific grade level data, commercially available, having FWHM less than 1.2 pixels spatially and less than 1.5 pixels spectrally. The combined VNIR-SWIR cube has coregistration errors, and smile and keystone of less than 10% of a pixel. With 40 degrees FOV, the camera is ideal for mapping large areas with high accuracy and resolution. The camera is delivered with an integrated high-performance IMU/GPS and data acquisition unit with removable storage bays as a standard. Existing navigation systems can also be integrated/utilized. A standard passive damping solution is included as a part of the default delivery package, but mounting plates for active damping solutions, such as GSM4000 or PAV80 can be supplied. |
Description | Wavelength range = 500-1000 nm Number of bands = 250 Spectral resolution = 5 nm Spectral sampling = 2 nm Resolution RGB = 2688 * 1512 px Resolution Spectral = 540 x 540 px Field of View - HSI/RGB = 33?/37? Detector = CMOS Sensor size = 2 Megapixel Radiometric resolution = 10 bit Integration time (cube) < 3 seconds Data size (raw) = 100 MB/ Data cube Connection = GigE Operation temperature = -10 - +50?C Protection class = IP 40 Power consumption = 100-240 V DC / 15 W Size =80 x 60 x 90 mm Weight = 630 g | Spectral Range = 400-800/485-960/400-1000 nm Spatial pixels = 1024 Spectral bands = 72/88/106 Max speed* = 1000/800/700 fps Spectral sampling = 5.5 nm Spectral FWHM <2 bands? Spatial FWHM < 1.7 pixels Keystone <15% of a pixel Smile <15% of band FOV = 16? / 40? Bit resolution = 12 Noise floor = 11e Peak SNR >286 Dynamic range = 2560 ROI* = 8 independent ROIs Dimensions (l-w-h) = 316 - 105 - 153 mm Camera Interface = CameraLink * Reducing the number of spectral channels with ROI will proportionally increase the max framerate | Spectral range = 970 - 2500 nm Spatial pixels = 620 Spectral channels and sampling = 300 bands @ 5.1 nm F-number = F1.9 FOV = 20? Pixel FOV across/along = 0.54/0.54 mrad Bit resolution = 16 bit Noise floor = 80 e- Dynamic range = 10000 Peak SNR (at full resolution) > 900 Max speed (at full resolution) = 170 fps Power consumption* = 50 W Dimensions (l-w-h)* = 254 - 175 - 170 mm Weight* < 4.5 kg *Includes IMU/GPS and DAU - <5 kg including standard battery | Spectral Range (nm) = 400 - 1000 Spectral Channels = 447 Spectral Bandwidth (nm) = 1.3 Spectral Resolution - FWHM (nm) = 1.9 Spatial Pixels = 1600 Max Frame Rate (fps) = 165 f/# = 2.4 Interface = USB 3.0 Dimensions (mm) = 265 x 106 x 75 Weight, w/o lens (kg) = 2.51 |
Leave a Reply