World?s lightest HSI camera
BlackBullet V2 is based on a hyperspectral linescanner, but there is no need to move the sensor during image acquisition to get a full hyperspectral data cube. With this feature your use case can benefit from a compact and lightweight measuring setup. The BlackBullet V2 camera was especially designed for UAV implementation with its lightweight design, but of course there is a multitude of other applications. A mounting plate with different type of threads is delivered with the camera to mount it whereever needed. Camera control works via Gigabit Ethernet, which opens up to a wide range of mounting options.
The desired spectral ranges can be individually selected. Additional pre-processing on camera is possible, as the camera has a build in NVIDIA Jetson GPU. BlackBullet is optimised for combined use with seperate available broadband LED lighting unit BlackBright
Haip BlackBullet V2
VNIR Compare
Haip BlackBullet V2
Wavelength range = 500-1000 nm
Number of bands = 250
Spectral resolution = 5 nm
Spectral sampling = 2 nm
Resolution RGB = 2688 * 1512 px
Resolution Spectral = 540 x 540 px
Field of View – HSI/RGB = 33?/37?
Detector = CMOS
Sensor size = 2 Megapixel
Radiometric resolution = 10 bit
Integration time (cube) < 3 seconds
Data size (raw) = 100 MB/ Data cube
Connection = GigE
Operation temperature = -10 - +50?C
Protection class = IP 40
Power consumption = 100-240 V DC / 15 W
Size =80 x 60 x 90 mm
Weight = 630 g
Quick Comparison
Haip BlackBullet V2 remove | HySpex Mjolnir S-620 remove | HySpex SWIR-384 remove | Resonon Pika IR-L remove | Resonon Pika IR+ remove | Resonon Pika UV remove | |
---|---|---|---|---|---|---|
Name | Haip BlackBullet V2 remove | HySpex Mjolnir S-620 remove | HySpex SWIR-384 remove | Resonon Pika IR-L remove | Resonon Pika IR+ remove | Resonon Pika UV remove |
Image | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
Rating | ||||||
Content | World?s lightest HSI camera BlackBullet V2 is based on a hyperspectral linescanner, but there is no need to move the sensor during image acquisition to get a full hyperspectral data cube. With this feature your use case can benefit from a compact and lightweight measuring setup. The BlackBullet V2 camera was especially designed for UAV implementation with its lightweight design, but of course there is a multitude of other applications. A mounting plate with different type of threads is delivered with the camera to mount it whereever needed. Camera control works via Gigabit Ethernet, which opens up to a wide range of mounting options. The desired spectral ranges can be individually selected. Additional pre-processing on camera is possible, as the camera has a build in NVIDIA Jetson GPU. BlackBullet is optimised for combined use with seperate available broadband LED lighting unit BlackBright | HySpex Mjolnir S-620 The HySpex Mjolnir S-620 hyperspectral imaging system for UAVs is the SWIR version of the Mjolnir camera series. Similar to the VNIR version, it provides a unique combination of small form factor and low mass, combined with high-performance specifications and scientific grade data quality. With a weight of less than 4.5 kg and less than 50 W power consumption, HySpex Mjolnir S-620 is very well suited for a wide range of UAVs. NEO offers high-performance unmanned aerial vehicles, fully integrated with the HySpex Mjolnir S-620. The UAV is fitted with a standard battery package allowing up to 30 minutes of flight time. All HySpex Mjolnir systems can also be mounted on a tripod and rotation stage for ground use. | HySpex SWIR-384 The HySpex SWIR-384 hyperspectral camera is developed for field, laboratory, and airborne applications. The state of the art MCT sensor with cooling down to 150K yields low background noise, high dynamic range, and exceptional SNR levels. With a max frame rate of 400 fps, combined with an aberration-corrected optical system with high optical throughput (f/2), the data quality, speed, and sensitivity is truly state of the art. A wide range of close-up lenses allows the use of the camera at working distances ranging from a few centimeters with a spatial resolution of 53 ?m to infinity e.g. airborne remote sensing. | Pika IR-L 925 - 1700 nm Lightweight Infrared The Pika IR-L is a lightweight and compact Near-Infrared (925-1,700 nm) imager. The small size and mass make it well suited for airborne applications, where it can provide invisible to the naked-eye contrast of outdoor features. For a compact, lightweight Visible light spectral range option, please see the Pika L. For a higher spectral and spatial resolution version of the Pika IR-L, please see the Pika IR-L+ imager. | Pika IR+ 900 - 1700 nm High-Precision Infrared The Pika IR+ (formerly Pika NIR-640) is a high-performance hyperspectral camera that covers the Near-Infrared (NIR) spectral range. It has high spatial and spectral resolutions and is often used for infrared laboratory applications. The Pika IR+ can be used in our airborne, laboratory, and outdoor hyperspectral systems, as well as standalone or integrated into your system. | Pika UV 330 - 800 nm Ultraviolet + Visible The Pika UV (formerly NUV2) is a hyperspectral camera that scans the Visible and Near Ultraviolet (VIS+NUV) spectral range. An optimized objective lens provides excellent imaging throughout the entire spectral range. Because halogen lights have low output in much of the NUV, Resonon offers an NUV lighting module to augment illumination for our desktop system. The Pika UV can be used in our airborne, laboratory, and outdoor hyperspectral systems, as well as standalone or integrated into your system. |
Description | Wavelength range = 500-1000 nm Number of bands = 250 Spectral resolution = 5 nm Spectral sampling = 2 nm Resolution RGB = 2688 * 1512 px Resolution Spectral = 540 x 540 px Field of View - HSI/RGB = 33?/37? Detector = CMOS Sensor size = 2 Megapixel Radiometric resolution = 10 bit Integration time (cube) < 3 seconds Data size (raw) = 100 MB/ Data cube Connection = GigE Operation temperature = -10 - +50?C Protection class = IP 40 Power consumption = 100-240 V DC / 15 W Size =80 x 60 x 90 mm Weight = 630 g | Spectral range = 970 - 2500 nm Spatial pixels = 620 Spectral channels and sampling = 300 bands @ 5.1 nm F-number = F1.9 FOV = 20? Pixel FOV across/along = 0.54/0.54 mrad Bit resolution = 16 bit Noise floor = 80 e- Dynamic range = 10000 Peak SNR (at full resolution) > 900 Max speed (at full resolution) = 170 fps Power consumption* = 50 W Dimensions (l-w-h)* = 254 - 175 - 170 mm Weight* < 4.5 kg *Includes IMU/GPS and DAU - <5 kg including standard battery | Spectral range = 930 - 2500 nm Spatial pixels = 384 Spectral channels = 288 Spectral sampling = 5.45 nm FOV* = 16? Pixel FOV across/along* = 0.73/0.73 mrad Bit resolution = 16 bit Noise floor = 150 e- Dynamic range = 7500 Peak SNR (at full resolution) > 1100 Max speed (at full resolution) = 400 fps Power consumption = 30 W Dimensions (l-w-h) = 38 - 12- 17.5 cm Weight = 5.7 kg Camera Interface = CameraLink *Can be doubled with FOV expander | Spectral Range (nm) = 925 - 1700 Spectral Channels = 236 Spectral Bandwidth (nm) = 3.3 Spectral Resolution - FWHM (nm) = 5.9 Spatial Pixels = 320 Max Frame Rate (fps) = 364 f/# = 1.8 Interface = GigE Dimensions (mm) = 210 x 68 x 63 Weight, w/o lens (kg) = 1.01 | Spectral Range (nm) = 900 - 1700 Spectral Channels = 336 Spectral Bandwidth (nm) = 2.4 Spectral Resolution - FWHM (nm) = 5.6 Spatial Pixels = 640 Max Frame Rate (fps) = 240 f/# = 1.8 Interface = GigE Dimensions (mm) = 264 x 115 x 88 Weight, w/o lens (kg) = 2.95 | Spectral Range (nm) = 330 - 800 Spectral Channels = 255 Spectral Bandwidth (nm) = 1.8 Spectral Resolution - FWHM (nm) = 2.8 Spatial Pixels = 1500 Max Frame Rate (fps) = 142 f/# = 2.8 InterfaceUSB = 3.0 Dimensions (mm) = 230 x 107 x 85 Weight, w/o lens (kg) = 2.27 |
Leave a Reply