Content | Very Compact Multispectral Cameras The TOUCAN Multispectral camera is specially designed to allow high integration of VIS+NIR multispectral systems. This lightweight (less than 180g) and very small footprint (52x63x40mm) camera splits the image into 10 spectral bands on a very large range (400-900nm). Made by hybridization of a custom Bayer-like mosaic filter on a commercial 4.2 MPixel CMOS Sensor, it allows extracting the spectrum on each point of the image. | Fenix
FENIX is optimized for the most demanding geological, law enforcement, and environmental applications. In a single continuous image, FENIX spectral camera delivers the best hyperspectral data ever seen over VNIR, NIR, and SWIR wavelengths. FENIX offers extreme ruggedness and 75% reduction in size and weight compared to previous multi-sensor systems. The excellence in technical performance and physical size has been achieved through innovative and unique ?single optics dual spectrograph? design. | HySpex VNIR-1800
The HySpex VNIR-1800 hyperspectral camera is developed for field, laboratory, and airborne applications.
HySpex VNIR-1800 utilizes a cutting edge actively cooled and stabilized scientific CMOS detector. This makes VNIR-1800 the ideal camera for high-end data acquisitions where high radiometric accuracy is required. The dynamic range of 20 000 ensures outstanding SNR levels even in darker areas of an image of highly dynamic scenes. With a max frame rate of 260 fps, combined with aberration-corrected optics and high optical throughput (f/2.5), HySpex VNIR-1800 offers a unique combination of
data quality, high speed, and sensitivity. A wide range of close-up lenses allows the use of the camera at working distances ranging from a few centimeters with a spatial resolution of 24 ?m to infinity e.g. airborne remote sensing. | Specim AFX10
Specim AFX10 is a VNIR hyperspectral imaging solution with an HSI camera, a small and powerful computer and a high-end GNSS/IMU unit in a compact enclosure that can be installed on multiple drone types. | HySpex Baldur S-640i N
Baldur S-640i N covers the spectral range from 950-1730nm.
All Baldur cameras are Nyquist cameras giving a spectral resolution of 2 spectral bands while capturing 4 times as much light as the classic systems. To ensure that the most information per framerate is provided, the spectral resolution is kept very close to 2 bands. Additionally, the spatial resolution of Baldur S-640i N is better than 1.5 pixels, yielding a very sharp camera. | Pika IR-L+
925 - 1700 nm
Lightweight, High-Precision Infrared
The Pika IR-L+ imager is a high spatial and spectral resolution Near-Infrared (925-1,700 nm) imager in a lightweight, compact format. It is well suited for field research, yet compatible with all imaging platforms (airborne, benchtop, or outdoor).
For a compact, lightweight Visible light spectral range option, please see the Pika L.
For higher imaging speeds, please see the Pika IR-L. |
Description | Typical spectral range = 420 - 870 nm
Band width (FWHM avg) = 30 - 50 nm
Number of bands = 10
Array type = CMOS
Optical Interface = CS-mount (C-mount compatible with additional C-ring)
Resolution (raw picture) = 2048 (H) x 2048 (V)
Resolution (spectral pictures) = 512 (H) x 512 (V)
Pixel pitch = 5.5 ?m
Maximum frame rate = 65 Hz (camera acquisition) / 20 Hz (COLOR SHADES Lab)
Exposure time range = 100 ?s to 5 s
ADC = 10-bit
Camera control = USB 3.0
Digital output = 10-bit USB 3.0
Power supply = USB 3.0
Dimension (W x H x L) = 52 x 63 x 40 mm
Weight (camera head) = 180 g | | Spectral range = 400 - 1000 nm
Spatial pixels = 1800
Spectral channels = 186
Spectral sampling = 3.26 nm
FOV* = 17?
Pixel FOV across/along* = 0.16/0.32 mrad
Bit resolution = 16 bit
Noise floor = 2.4 e-
Dynamic range = 20000
Peak SNR (at full resolution) > 255
Max speed (at full resolution) = 260 fps
Power consumption = 30 W
Dimensions (l-w-h) = 39 - 9.9 - 15 cm
Weight = 5.0 kg
Camera Interface = CameraLink
*Can be doubled with FOV expander | Spectral Range = 400 - 1000 nm
Spectral sampling = 2.68 nm
Spectral resolution = 5.5 nm
Fore lens focal length = 15 mm
Field of view = 38 deg
F/# = 1.7
Spectral bands = 224 Binned by 2
Spatial pixels = 1024
Spectral binning options = 2, 4, 8
Spatial binning options = 1, 2
Multiple ROI = User-selectable
Maximum frame rate = 330 fps Full frame
Dynamic range = 1420
SNR = 400:1 2 spectral binning, 1 spatial binning
Power input = 10-30 VDC. Use separate battery or UAV/gimbal power
Power consumption = 17 W Typical
Connectors = ANT, DC IN, ETH GPS Antenna, Power In, Web UI / Data download
Storage temperature = -20 ? +50C
Operating temperature = +5 ? +40C
Relative humidity = 5 - 90 %. Non-condensing
Drone options = Multirotor with gimbal/ Multirotor, no gimbal/ Fixed Wing UAV. Any drone with adequate payload capacity can be used.
Gimbal = Optimized for MoVI pro. Other suitable gimbals may also be used
Gimbal weight = 2.2 - 2.7 kg. Typical gimbal solution
Operating height = 15 - 150 m. Typical, local limitations may apply
GNSS/IMU = Trimble APX-15
GPS Antenna = Trimble AV 14
Internal Memory = 512GB SSD
Dimensions (W x H x L) = 131 x 152 x 202 mm
Weight (without gimbal) = 2.1 kg
Weight (with gimbal) = 4.8 kg. Typical gimbal solution | Spectral Range = 950 - 1730 nm
Spectral bands = 232
Max speed* = 500 fps
Spectral sampling = 3.36 nm
Spectral FWHM <2 bands
Spatial FWHM <1.5 pixels
Spatial pixels = 640
Keystone <20% of a pixel
Smile <20% of band
FOV = 16? / 40?
Bit resolution = 12 bit
Noise floor = HG:8.5/MG:32/LG:270 e-
Peak SNR = HG:150/MG:275/LG:800
Dynamic range = HG:2650/MG:2360/LG:2360
ROI* = All bands can be selected/deselected individually
External trigger options = LVDS, 5V/12V/24V TTL
Dimensions (l-w-h) = 364 - 105 - 153 mm
Camera Interface = GigE
* Reducing the number of spectral channels with ROI will proportionally increase the max framerate | Spectral Range (nm) = 925 - 1700
Spectral Channels = 470
Spectral Bandwidth (nm) = 1.7
Spectral Resolution - FWHM (nm) = 3.8
Spatial Pixels = 640
Max Frame Rate (fps) = 176
f/# = 1.8
Interface = GigE
Dimensions (mm) = 210 x 68 x 63
Weight, w/o lens (kg) = 1.01 |
Leave a Reply