Content | Pika IR+
900 - 1700 nm
High-Precision Infrared
The Pika IR+ (formerly Pika NIR-640) is a high-performance hyperspectral camera that covers the Near-Infrared (NIR) spectral range. It has high spatial and spectral resolutions and is often used for infrared laboratory applications. The Pika IR+ can be used in our airborne, laboratory, and outdoor hyperspectral systems, as well as standalone or integrated into your system. | HySpex VS-1200
The HySpex VS-1200 hyperspectral camera is developed for airborne applications requiring extreme resolution in both VNIR and SWIR spectral regions.
The HySpex VS-1200 is a novel high-resolution instrument designed for airborne applications at altitudes greater than 400m.
The camera produces the highest scientific grade level data, commercially available, having FWHM less than 1.2 pixels spatially and less than 1.5 pixels spectrally. The combined VNIR-SWIR cube has coregistration errors, and smile and keystone of less than 10% of a pixel.
With 40 degrees FOV, the camera is ideal for mapping large areas with high accuracy and resolution.
The camera is delivered with an integrated high-performance IMU/GPS and data acquisition unit with removable storage bays as a standard. Existing navigation systems can also be integrated/utilized.
A standard passive damping solution is included as a part of the default delivery package, but mounting plates for active damping solutions, such as GSM4000 or PAV80 can be supplied. | Pika IR
900 - 1700 nm
High-Speed Infrared
The Pika IR (formerly Pika NIR-320) is a high-speed, cost-effective hyperspectral camera that covers the Near-Infrared (NIR) spectral range. It is our most popular imager for machine vision applications.
The Pika IR can be used in our airborne, laboratory, and outdoor hyperspectral systems, as well as standalone or integrated into your system. | HySpex VNIR-1800
The HySpex VNIR-1800 hyperspectral camera is developed for field, laboratory, and airborne applications.
HySpex VNIR-1800 utilizes a cutting edge actively cooled and stabilized scientific CMOS detector. This makes VNIR-1800 the ideal camera for high-end data acquisitions where high radiometric accuracy is required. The dynamic range of 20 000 ensures outstanding SNR levels even in darker areas of an image of highly dynamic scenes. With a max frame rate of 260 fps, combined with aberration-corrected optics and high optical throughput (f/2.5), HySpex VNIR-1800 offers a unique combination of
data quality, high speed, and sensitivity. A wide range of close-up lenses allows the use of the camera at working distances ranging from a few centimeters with a spatial resolution of 24 ?m to infinity e.g. airborne remote sensing. | HySpex VNIR-3000 N
HySpex VNIR-3000 N is developed for field, laboratory, and airborne applications.
HySpex VNIR-3000 N utilizes the same spectrograph as the other classical HySpex VNIR models. With a pixel size of 3.45?m, compared to 6. 5?m for VNIR-1800, HySpex VNIR-3000 N will have less than 1.6 pixels per FWHM of the PSF spatially and less than 1.8 bands spectrally, ensuring that narrow band features will be resolved equally for all cameras. With 3000 spatial pixels, 300 bands and a noise floor of 2.4e-, HySpex VNIR-3000N will provide outstanding SNR levels in dark environments.
The camera is offered with a USB connection, allowing camera operation from any computer and reducing the cost of supplementing equipment. To visualize that the camera has a wider PSF per pixel and band relative to our normal extremely sharp cameras, we have added an N for Nyquist to the model name. | Fenix
FENIX is optimized for the most demanding geological, law enforcement, and environmental applications. In a single continuous image, FENIX spectral camera delivers the best hyperspectral data ever seen over VNIR, NIR, and SWIR wavelengths. FENIX offers extreme ruggedness and 75% reduction in size and weight compared to previous multi-sensor systems. The excellence in technical performance and physical size has been achieved through innovative and unique ?single optics dual spectrograph? design. |
Description | Spectral Range (nm) = 900 - 1700
Spectral Channels = 336
Spectral Bandwidth (nm) = 2.4
Spectral Resolution - FWHM (nm) = 5.6
Spatial Pixels = 640
Max Frame Rate (fps) = 240
f/# = 1.8
Interface = GigE
Dimensions (mm) = 264 x 115 x 88
Weight, w/o lens (kg) = 2.95 | | Spectral Range (nm) = 900 - 1700
Spectral Channels = 168
Spectral Bandwidth (nm) = 4.8
Spectral Resolution - FWHM (nm) = 8.8
Spatial Pixels = 320
Max Frame Rate (fps) = 508
f/# = 1.8
Interface = GigE
Dimensions (mm) = 264 x 115 x 88
Weight, w/o lens (kg) = 2.95 | Spectral range = 400 - 1000 nm
Spatial pixels = 1800
Spectral channels = 186
Spectral sampling = 3.26 nm
FOV* = 17?
Pixel FOV across/along* = 0.16/0.32 mrad
Bit resolution = 16 bit
Noise floor = 2.4 e-
Dynamic range = 20000
Peak SNR (at full resolution) > 255
Max speed (at full resolution) = 260 fps
Power consumption = 30 W
Dimensions (l-w-h) = 39 - 9.9 - 15 cm
Weight = 5.0 kg
Camera Interface = CameraLink
*Can be doubled with FOV expander | Spectral range = 400 - 1000 nm
Spatial pixels = 3000
Spectral channels = 300
Spectral sampling = 2.0 nm
FOV* = 16?
Pixel FOV across/along* = 0.096/0.32 mrad
Bit resolution = 12 bit
Noise floor = 2.37 e-
Dynamic range = 11000
Peak SNR (at full resolution) > 170
Max speed (at full resolution) = 117 fps
Power consumption = 30 W
Dimensions (l-w-h) = 39 - 9.9- 15 cm
Weight = 5.0 kg
Camera Interface = USB3
*Can be doubled with FOV expander | |
Reviews
There are no reviews yet.