Photonfocus SNAPSHOT RedNIR
Want to test hyperspectral scanning and analysis in the RedNIR range? With this user-friendly real-time GigE camera from Photonfocus, integrating imec?s hyperspectral sensor, you?ll be looking at relevant test data within a few minutes of the installation.
Photonfocus SNAPSHOT RedNIR
VNIR Compare
Photonfocus SNAPSHOT RedNIR
spectral range = 600-870 nm
spectral resolution = 15 bands
spatial resolution = 2040 x 1080
imager type = CMOS imager, CMOSIS CMV2000-based
acquisition speed = Up to 42 hyperspectral cubes/second (limit of GigE vision interface)
pixel pitch = 5.5 ?m pixels, 2/3?? sensor optical format
bit depth = 10 bits
optics = 16/25/35/50 mm lenses, C-mount
camera interface = GigE vision + GPIO for triggering
power consumption <5.1 W
camera dimensions (W x H x D) = 55 x 55 x 52 mm
camera weight = 265 g without optics
software = HSI MOSAIC software for raw image acquisition, data pre-processing, hypercube visualization and classification, including API
One response to “Photonfocus SNAPSHOT RedNIR”
Leave a Reply
Quick Comparison
| Photonfocus SNAPSHOT RedNIR remove | HySpex Baldur S-640i N remove | Resonon Pika IR-L remove | Resonon Pika L remove | Resonon Pika IR+ remove | HySpex SWIR-384 remove | |
|---|---|---|---|---|---|---|
| Name | Photonfocus SNAPSHOT RedNIR remove | HySpex Baldur S-640i N remove | Resonon Pika IR-L remove | Resonon Pika L remove | Resonon Pika IR+ remove | HySpex SWIR-384 remove |
| Image | ||||||
| Rating | ||||||
| Content | Photonfocus SNAPSHOT RedNIR Want to test hyperspectral scanning and analysis in the RedNIR range? With this user-friendly real-time GigE camera from Photonfocus, integrating imec?s hyperspectral sensor, you?ll be looking at relevant test data within a few minutes of the installation. | HySpex Baldur S-640i N Baldur S-640i N covers the spectral range from 950-1730nm. All Baldur cameras are Nyquist cameras giving a spectral resolution of 2 spectral bands while capturing 4 times as much light as the classic systems. To ensure that the most information per framerate is provided, the spectral resolution is kept very close to 2 bands. Additionally, the spatial resolution of Baldur S-640i N is better than 1.5 pixels, yielding a very sharp camera. | Pika IR-L 925 - 1700 nm Lightweight Infrared The Pika IR-L is a lightweight and compact Near-Infrared (925-1,700 nm) imager. The small size and mass make it well suited for airborne applications, where it can provide invisible to the naked-eye contrast of outdoor features. For a compact, lightweight Visible light spectral range option, please see the Pika L. For a higher spectral and spatial resolution version of the Pika IR-L, please see the Pika IR-L+ imager. | Pika L 400 - 1000 nm Lightweight, Compact VNIR The Pika L is a lightweight, compact hyperspectral camera that covers the Visible + Near-Infrared (VNIR) spectral range. It is our most popular imager for remote sensing applications. The Pika L can be used in our airborne, laboratory, and outdoor hyperspectral systems, as well as standalone or integrated into your system. | Pika IR+ 900 - 1700 nm High-Precision Infrared The Pika IR+ (formerly Pika NIR-640) is a high-performance hyperspectral camera that covers the Near-Infrared (NIR) spectral range. It has high spatial and spectral resolutions and is often used for infrared laboratory applications. The Pika IR+ can be used in our airborne, laboratory, and outdoor hyperspectral systems, as well as standalone or integrated into your system. | HySpex SWIR-384 The HySpex SWIR-384 hyperspectral camera is developed for field, laboratory, and airborne applications. The state of the art MCT sensor with cooling down to 150K yields low background noise, high dynamic range, and exceptional SNR levels. With a max frame rate of 400 fps, combined with an aberration-corrected optical system with high optical throughput (f/2), the data quality, speed, and sensitivity is truly state of the art. A wide range of close-up lenses allows the use of the camera at working distances ranging from a few centimeters with a spatial resolution of 53 ?m to infinity e.g. airborne remote sensing. |
| Description | spectral range = 600-870 nm spectral resolution = 15 bands spatial resolution = 2040 x 1080 imager type = CMOS imager, CMOSIS CMV2000-based acquisition speed = Up to 42 hyperspectral cubes/second (limit of GigE vision interface) pixel pitch = 5.5 ?m pixels, 2/3?? sensor optical format bit depth = 10 bits optics = 16/25/35/50 mm lenses, C-mount camera interface = GigE vision + GPIO for triggering power consumption <5.1 W camera dimensions (W x H x D) = 55 x 55 x 52 mm camera weight = 265 g without optics software = HSI MOSAIC software for raw image acquisition, data pre-processing, hypercube visualization and classification, including API | Spectral Range = 950 - 1730 nm Spectral bands = 232 Max speed* = 500 fps Spectral sampling = 3.36 nm Spectral FWHM <2 bands Spatial FWHM <1.5 pixels Spatial pixels = 640 Keystone <20% of a pixel Smile <20% of band FOV = 16? / 40? Bit resolution = 12 bit Noise floor = HG:8.5/MG:32/LG:270 e- Peak SNR = HG:150/MG:275/LG:800 Dynamic range = HG:2650/MG:2360/LG:2360 ROI* = All bands can be selected/deselected individually External trigger options = LVDS, 5V/12V/24V TTL Dimensions (l-w-h) = 364 - 105 - 153 mm Camera Interface = GigE * Reducing the number of spectral channels with ROI will proportionally increase the max framerate | Spectral Range (nm) = 925 - 1700 Spectral Channels = 236 Spectral Bandwidth (nm) = 3.3 Spectral Resolution - FWHM (nm) = 5.9 Spatial Pixels = 320 Max Frame Rate (fps) = 364 f/# = 1.8 Interface = GigE Dimensions (mm) = 210 x 68 x 63 Weight, w/o lens (kg) = 1.01 | Spectral Range (nm) = 400 - 1000 Spectral Channels = 281 Spectral Bandwidth (nm) = 2.1 Spectral Resolution - FWHM (nm) = 3.3 Spatial Pixels = 900 Max Frame Rate (fps) = 249 f/# = 2.4 Interface = USB 3.0 Dimensions (mm) = 115 x 104 x 66 Weight, w/o lens (kg) = 0.64 | Spectral Range (nm) = 900 - 1700 Spectral Channels = 336 Spectral Bandwidth (nm) = 2.4 Spectral Resolution - FWHM (nm) = 5.6 Spatial Pixels = 640 Max Frame Rate (fps) = 240 f/# = 1.8 Interface = GigE Dimensions (mm) = 264 x 115 x 88 Weight, w/o lens (kg) = 2.95 | Spectral range = 930 - 2500 nm Spatial pixels = 384 Spectral channels = 288 Spectral sampling = 5.45 nm FOV* = 16? Pixel FOV across/along* = 0.73/0.73 mrad Bit resolution = 16 bit Noise floor = 150 e- Dynamic range = 7500 Peak SNR (at full resolution) > 1100 Max speed (at full resolution) = 400 fps Power consumption = 30 W Dimensions (l-w-h) = 38 - 12- 17.5 cm Weight = 5.7 kg Camera Interface = CameraLink *Can be doubled with FOV expander |
I have realized that in cameras, extraordinary receptors help to focus automatically. The sensors associated with some digital cameras change in contrast, while others employ a beam with infra-red (IR) light, especially in low light. Higher specification cameras from time to time use a combination of both systems and likely have Face Priority AF where the video camera can ‘See’ a face while focusing only on that. Many thanks for sharing your ideas on this blog site.