Content | imec SNAPSHOT UAV VIS+NIR
How can a spectral camera become an analyzing tool in situations where the motion is not linear and perfectly controlled? This payload can help you develop a fully integrated solution that will make the acquisition of high quality spectral data on a flight mode easy and fast. The two embedded snapshot imagers VIS and RedNIR enable a user-friendly approach with real-time acquisition, processing and down-streaming of the application data at video rate from drone-based systems, focusing only on the application and research. This UAV platform is compatible with the DJI M600 Pro and can be connected in one click. Users can modify it in any way required for the integration into other flight controllers. It can be used as a development tool for hardware and software to end up in a complete UAV solution. Different arrangements and new ideas can be derived from utilizing this technology platform for drone-like applications such as precision agriculture and environment sensing. | HySpex VNIR-3000 N
HySpex VNIR-3000 N is developed for field, laboratory, and airborne applications.
HySpex VNIR-3000 N utilizes the same spectrograph as the other classical HySpex VNIR models. With a pixel size of 3.45?m, compared to 6. 5?m for VNIR-1800, HySpex VNIR-3000 N will have less than 1.6 pixels per FWHM of the PSF spatially and less than 1.8 bands spectrally, ensuring that narrow band features will be resolved equally for all cameras. With 3000 spatial pixels, 300 bands and a noise floor of 2.4e-, HySpex VNIR-3000N will provide outstanding SNR levels in dark environments.
The camera is offered with a USB connection, allowing camera operation from any computer and reducing the cost of supplementing equipment. To visualize that the camera has a wider PSF per pixel and band relative to our normal extremely sharp cameras, we have added an N for Nyquist to the model name. | HySpex Baldur S-384 N
Baldur S-384 N covers the spectral range from 960-2500 nm.
All Baldur cameras are Nyquist cameras giving a spectral resolution of 2 spectral bands while capturing 4 times as much light as the classic systems. To ensure that the most information per framerate is provided, the spectral resolution is kept very close to 2 bands. Additionally, the spatial resolution of Baldur S-384 N is better than 1.5 pixels, yielding a very sharp camera. | SWIR
SWIR is a high-speed short-wave infrared hyperspectral camera that operates in the 1000-2500 nm range. It has 384 spatial pixels and achieves image rates of up to 400 frames per second using a CameraLink connection.
To assure indoor/outdoor usage in varying conditions, it now has rugged weather-proof IP54 casing and temperature-stabilized optics but still uses less power than before, only 50W nominal.
Its temperature-stabilized optics provide stability and sensitivity required in the most challenging near-infrared chemical imaging applications, from pharmaceutical quality assurance to food and agriculture analysis. The SWIR camera meets the highest requirements in the lab, industry, and field. | HySpex Mjolnir S-620
The HySpex Mjolnir S-620 hyperspectral imaging system for UAVs is the SWIR version of the Mjolnir camera series. Similar to the VNIR version, it provides a unique combination of small form factor and low mass, combined with high-performance specifications and scientific grade data quality.
With a weight of less than 4.5 kg and less than 50 W power consumption, HySpex Mjolnir S-620 is very well suited for a wide range of UAVs.
NEO offers high-performance unmanned aerial vehicles, fully integrated with the HySpex Mjolnir S-620. The UAV is fitted with a standard battery package allowing up to 30 minutes of flight time. All HySpex Mjolnir systems can also be mounted on a tripod and rotation stage for ground use. | HySpex VNIR-1800
The HySpex VNIR-1800 hyperspectral camera is developed for field, laboratory, and airborne applications.
HySpex VNIR-1800 utilizes a cutting edge actively cooled and stabilized scientific CMOS detector. This makes VNIR-1800 the ideal camera for high-end data acquisitions where high radiometric accuracy is required. The dynamic range of 20 000 ensures outstanding SNR levels even in darker areas of an image of highly dynamic scenes. With a max frame rate of 260 fps, combined with aberration-corrected optics and high optical throughput (f/2.5), HySpex VNIR-1800 offers a unique combination of
data quality, high speed, and sensitivity. A wide range of close-up lenses allows the use of the camera at working distances ranging from a few centimeters with a spatial resolution of 24 ?m to infinity e.g. airborne remote sensing. |
Description | spectral range = 460 nm - 900 nm
spectral resolution = 31 bands
spatial resolution = 2 x 2048 x 1088 px
FWHM (full width at half maximum) = 10 - 15 nm
pixel pitch = 5.5?m
acquisition speed = 2 x 20 fps
dynamic range = 10 bit
gimbal = Gremsy T3v3 with hyper quick release =
mechanical dimensions (W x H x D) 10 x 8 x 9.5 cm
weight = 620 g without optics
embedded hardware = Nvidia Jetson GPU, 1 TB local storage
optics = C-mount | Spectral range = 400 - 1000 nm
Spatial pixels = 3000
Spectral channels = 300
Spectral sampling = 2.0 nm
FOV* = 16?
Pixel FOV across/along* = 0.096/0.32 mrad
Bit resolution = 12 bit
Noise floor = 2.37 e-
Dynamic range = 11000
Peak SNR (at full resolution) > 170
Max speed (at full resolution) = 117 fps
Power consumption = 30 W
Dimensions (l-w-h) = 39 - 9.9- 15 cm
Weight = 5.0 kg
Camera Interface = USB3
*Can be doubled with FOV expander | Spectral Range = 960 - 2500nm
Spectral bands = 288
Max speed* = 500 fps
Spectral sampling = 5.45 nm
Spectral FWHM <2 bands
Spatial FWHM <1.3 pixels
Spatial pixels = 384
Keystone <15% of a pixel
Smile <15% of band
FOV = 16? / 40?
Bit resolution = 16 bit
Noise floor = 150 e-
Peak SNR >1100
Dynamic range = 7500
ROI* = All bands can be selected/deselected individually
External trigger options LVDS, 5V/12V/24V TTL
Dimensions (l-w-h) = 368 - 131 - 175 mm
Camera Interface = CameraLink
* Reducing the number of spectral channels with ROI will proportionally increase the max framerate | Spectral range = 1000 - 2500 nm
Spectral resolution (FWHM) = 12 nm (30 ?m slit)
Spectral sampling / pixel = 5.6 nm
F/# = F/2.0
Slit width = 30 ?m (50 or 80 ?m optional)
Effective slit length = 9.2 mmRICAL CHARACTERISTICS
Sensor = Cryogenically cooled MCT detector
Spatial pixels = 384
Spectral bands = 288
Pixel size = 24 x 24 ?m
Detector cooling = Stirling, 25 000 h MTTF
Signal-to-noise ratio = 1050:1 (at max. signal level)
Camera output = 16 bit CameraLink
Data cable Length = 5m
Camera control = USB/RS232
Frame grabber = NI-1433
Epix grabber = E4*
Frame rate = 450 fps (maximum full frame)
Exposure time range = 0.1 - 20 ms
Power consumption = Nominal < 50 W
Input voltage = 18 - 36 VNICAL CHARACTERISTICS
Size (L x W x H) = Sensor 545 x 176 x 178 mm, PSU & control unit 300 x 190 x 130 mm
Weight = 14 kg & approx. 5 kg
Body = Anodized aluminium with mounting screwholes
Lens mount = Standard C-mount
Shutter = Electro-mechanicalONMENTAL CHARACTERISTICS
Storage = -20... +50 ?C
Operating = +5... +40 ?C non-condensing | Spectral range = 970 - 2500 nm
Spatial pixels = 620
Spectral channels and sampling = 300 bands @ 5.1 nm
F-number = F1.9
FOV = 20?
Pixel FOV across/along = 0.54/0.54 mrad
Bit resolution = 16 bit
Noise floor = 80 e-
Dynamic range = 10000
Peak SNR (at full resolution) > 900
Max speed (at full resolution) = 170 fps
Power consumption* = 50 W
Dimensions (l-w-h)* = 254 - 175 - 170 mm
Weight* < 4.5 kg
*Includes IMU/GPS and DAU - <5 kg including standard battery | Spectral range = 400 - 1000 nm
Spatial pixels = 1800
Spectral channels = 186
Spectral sampling = 3.26 nm
FOV* = 17?
Pixel FOV across/along* = 0.16/0.32 mrad
Bit resolution = 16 bit
Noise floor = 2.4 e-
Dynamic range = 20000
Peak SNR (at full resolution) > 255
Max speed (at full resolution) = 260 fps
Power consumption = 30 W
Dimensions (l-w-h) = 39 - 9.9 - 15 cm
Weight = 5.0 kg
Camera Interface = CameraLink
*Can be doubled with FOV expander |
Leave a Reply