Content | imec SNAPSHOT UAV VIS+NIR
How can a spectral camera become an analyzing tool in situations where the motion is not linear and perfectly controlled? This payload can help you develop a fully integrated solution that will make the acquisition of high quality spectral data on a flight mode easy and fast. The two embedded snapshot imagers VIS and RedNIR enable a user-friendly approach with real-time acquisition, processing and down-streaming of the application data at video rate from drone-based systems, focusing only on the application and research. This UAV platform is compatible with the DJI M600 Pro and can be connected in one click. Users can modify it in any way required for the integration into other flight controllers. It can be used as a development tool for hardware and software to end up in a complete UAV solution. Different arrangements and new ideas can be derived from utilizing this technology platform for drone-like applications such as precision agriculture and environment sensing. | HySpex Mjolnir V-1240
The HySpex Mjolnir V-1240 hyperspectral imaging system for UAVs provides a unique combination of small form factor and low mass, combined with high-performance specifications and scientific grade data quality.
With a weight of less than 4 kg and less than 50 W power consumption, HySpex Mjolnir V-1240 is very well suited for a wide range of UAVs.
The system is also compatible with several off-the-shelf gimbals. NEO offers high-performance unmanned aerial vehicles, fully integrated with the HySpex Mjolnir V-1240. The UAV is fitted with a standard battery package allowing up to 30 minutes of flight time. All HySpex Mjolnir systems can also be mounted on a tripod and rotation stage for ground use. | HySpex Mjolnir VS-620
For applications requiring low mass, combined with high-performance specifications and scientific grade data quality on the full VNIR-SWIR range, HySpex Mjolnir VS-620 is an ideal solution. Sharing the onboard data acquisition unit and navigation system, HySpex Mjolnir VS-620 is both space-efficient and cost-effective.
The VNIR and SWIR optical axis are coaligned in the along-track direction, assuring perfect coregistration in the flight direction. In addition to the high-quality hyperspectral data cube, covering the spectral range from 400 - 2500 nm, with 490 bands, double resolution data in the VNIR range is always readily available. With smile and keystone less than 0.1 pixels for each spectral range, the merged Mjolnir VS-620 data product will have coregistration/keystone better than 0.2 pixels for the full VNIR-SWIR range. | Pika L
400 - 1000 nm
Lightweight, Compact VNIR
The Pika L is a lightweight, compact hyperspectral camera that covers the Visible + Near-Infrared (VNIR) spectral range. It is our most popular imager for remote sensing applications.
The Pika L can be used in our airborne, laboratory, and outdoor hyperspectral systems, as well as standalone or integrated into your system. | HySpex VNIR-3000 N
HySpex VNIR-3000 N is developed for field, laboratory, and airborne applications.
HySpex VNIR-3000 N utilizes the same spectrograph as the other classical HySpex VNIR models. With a pixel size of 3.45?m, compared to 6. 5?m for VNIR-1800, HySpex VNIR-3000 N will have less than 1.6 pixels per FWHM of the PSF spatially and less than 1.8 bands spectrally, ensuring that narrow band features will be resolved equally for all cameras. With 3000 spatial pixels, 300 bands and a noise floor of 2.4e-, HySpex VNIR-3000N will provide outstanding SNR levels in dark environments.
The camera is offered with a USB connection, allowing camera operation from any computer and reducing the cost of supplementing equipment. To visualize that the camera has a wider PSF per pixel and band relative to our normal extremely sharp cameras, we have added an N for Nyquist to the model name. | Specim FX10
Specim FX10 is a line-scan hyperspectral camera that operates in the visible and near-infrared (VNIR) region. It is an excellent tool for industrial and scientific applications.
The Specim FX10 operates in the 400-1000 nm region, and the color-optimized Specim FX10c in the 400-780 nm region. |
Description | spectral range = 460 nm - 900 nm
spectral resolution = 31 bands
spatial resolution = 2 x 2048 x 1088 px
FWHM (full width at half maximum) = 10 - 15 nm
pixel pitch = 5.5?m
acquisition speed = 2 x 20 fps
dynamic range = 10 bit
gimbal = Gremsy T3v3 with hyper quick release =
mechanical dimensions (W x H x D) 10 x 8 x 9.5 cm
weight = 620 g without optics
embedded hardware = Nvidia Jetson GPU, 1 TB local storage
optics = C-mount | Spectral range = 400 - 1000 nm
Spatial pixels = 1240
Spectral channels and sampling = 200 bands @ 3 nm
F-number = F1.8
FOV = 20?
Pixel FOV across/along = 0.27/0.27 mrad
Bit resolution = 12 bit
Noise floor = 2.3 e-
Dynamic range = 4400
Peak SNR (at full resolution) > 180
Max speed (at full resolution) = 285 fps
Power consumption = 50 W
Dimensions (l-w-h) = 250 - 175 - 170 mm
Weight < 4 kg
*Includes IMU/GPS and DAU - <6.5 kg including standard battery | | Spectral Range (nm) = 400 - 1000
Spectral Channels = 281
Spectral Bandwidth (nm) = 2.1
Spectral Resolution - FWHM (nm) = 3.3
Spatial Pixels = 900
Max Frame Rate (fps) = 249
f/# = 2.4
Interface = USB 3.0
Dimensions (mm) = 115 x 104 x 66
Weight, w/o lens (kg) = 0.64 | Spectral range = 400 - 1000 nm
Spatial pixels = 3000
Spectral channels = 300
Spectral sampling = 2.0 nm
FOV* = 16?
Pixel FOV across/along* = 0.096/0.32 mrad
Bit resolution = 12 bit
Noise floor = 2.37 e-
Dynamic range = 11000
Peak SNR (at full resolution) > 170
Max speed (at full resolution) = 117 fps
Power consumption = 30 W
Dimensions (l-w-h) = 39 - 9.9- 15 cm
Weight = 5.0 kg
Camera Interface = USB3
*Can be doubled with FOV expander | Spectral Range = 400-1000 / 400-780 (c-version)
Spectral resolution (FWHM) = 5.5 nm (mean)
Spectral sampling/pixel = 2.7 nm, With default binning
Spectral bands = 224 / 140 (c-version), With default binning
Numerical aperture = 1.7, With default lens
Optics magnification = 0.80
Effective pixel size = 19.9x9.97 ?m, At fore lens image plane
Effective slit width = 42 ?m, At fore lens image plane
Effective slit length = 10.2 mm, At fore lens image plane
SNR @ max. signal = 420 : 1
Spatial samples = 1024
Bit depth = 12
Maximum frame rate = 327 FPS full range / 514 FPS full range (c-version)
Binning = 2,4,8 spectral and spatial Default: 2 spectral x 1 spatial
ROI = Freely selectable multiple bands of interest. Minimum height of ROI is two 1-binned rows. Maximum frame rate is determined by the total number of rows included in the mMROI?s
Pixel operability = 99.993%
Image corrections = Non uniformity correction/Bad pixel replacement/Automatic Image Enhancement (AIE)/One point NUC. AIE: Unified spectral calibration + corrected smile and keystone aberrations
Sensor material = CMOS
Sensor cooling = Passive
Full well capacity = 90 ke-
Read-out modes = IWR / ITR
Optics temperature = Passive
Lens mount = Custom mount
Fore lens FOV options = 12 deg/ 38 deg (default)/ 47 deg/ 51 deg/ 83 deg. Only the default lens is specifically designed for FX10. With other lens options, optical parameters may vary.
Camera digital data output/control interface = GigE Vision, CameraLink
Camera control protocols = GenICam, ASCII
Power input = 12 V DC (+-10%)
Power consumption = Max 4 W
Connectors = Industrial Ethernet OR CameraLink 26-pin, 0.5?
MDR
IP = IP52
Dimensions (L x W x H) = 150 x 85 x 71 mm Mounting surface option on three sides.
Mounting kit adds 24 mm distance on mounting side.
Weight = 1.3 kg
Storage temperature = -20 ... +50?C (non-condensing)
Operating temperature = +5 ? +40?C (non-condensing)
Relative humidity = 5% - 95% (non-condensing) |
Leave a Reply