imec SNAPSCAN SWIR
Imec?s SNAPSCAN cameras provide user-friendly systems to both advanced and new R&D users. Without making any concessions on the quality of your data.
Acquire images with high spatial and spectral resolutions in seconds.
Enjoy minimal preparation time thanks to hyperspectral imaging without translating stage.
Get instant insights thanks to imec?s included software for acquisition, pre-processing and visualization.
This complete evaluation kit includes, besides the camera, all required accessories, lens recommendations, an optional evaluation setup, acquisition and analysis software, manuals and remote support – from basic help to tailored application support.
imec SNAPSCAN SWIR
imec SNAPSCAN SWIR
spatial resolution = up to 1200 x 640 px (0.8 Mpx RAW per band)
spectral resolution = 100 bands
spectral range = 1100-1650 nm
FWHM (full width at half maximum) = ~ 10-15 nm (collimated)
acquisition speed = -2 to -10 seconds, depending on acquisition parameters, lighting and object
SNR = up to 600:1
software = HSI SNAPSCAN software for raw image acquisition, data pre-processing, hypercube visualization and classification; C and Python API for acquisition and data pre-processing in custom software
software scanning modes = Digital TDI (up to 4 stages max)/ Multi-exposures (1-40)/ HDR exposures (1-10)/ Digital binning (2 x 2, 3 x 3, 4 x 4)/ Spectral ROI – Region of Interest/ Spatial ROI – Region of Interest
dynamic range = 13 bit
optics = standard C-mount; 16/25/35/50 mm lenses available
smile & keystone = software-corrected
interface = USB 3.0 + GPIO for triggering (TTL)
cooling = passive & active cooling (fan-based + TEC)
ambient temperature = -5?C to 50?C (operation), -20?C to 60?C (storage)
mechanical = integrated mechanical shutter for automatic dark-counts, tripod mount (???- 20) + side-mounting M5 holes
dimensions (L x W x H) = 9 x 9 x 15 cm
weight = 895 g (without optics)
hyperspectral software compatibility = output in standard ENVI hyperspectral data format
Quick Comparison
imec SNAPSCAN SWIR remove | Specim Fenix remove | Resonon Pika UV remove | HySpex Baldur S-384 N remove | Resonon Pika IR-L+ remove | Resonon Pika L remove | |
---|---|---|---|---|---|---|
Name | imec SNAPSCAN SWIR remove | Specim Fenix remove | Resonon Pika UV remove | HySpex Baldur S-384 N remove | Resonon Pika IR-L+ remove | Resonon Pika L remove |
Image | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
Rating | ||||||
Content | imec SNAPSCAN SWIR Imec?s SNAPSCAN cameras provide user-friendly systems to both advanced and new R&D users. Without making any concessions on the quality of your data. Acquire images with high spatial and spectral resolutions in seconds. Enjoy minimal preparation time thanks to hyperspectral imaging without translating stage. Get instant insights thanks to imec?s included software for acquisition, pre-processing and visualization. This complete evaluation kit includes, besides the camera, all required accessories, lens recommendations, an optional evaluation setup, acquisition and analysis software, manuals and remote support - from basic help to tailored application support. | Fenix FENIX is optimized for the most demanding geological, law enforcement, and environmental applications. In a single continuous image, FENIX spectral camera delivers the best hyperspectral data ever seen over VNIR, NIR, and SWIR wavelengths. FENIX offers extreme ruggedness and 75% reduction in size and weight compared to previous multi-sensor systems. The excellence in technical performance and physical size has been achieved through innovative and unique ?single optics dual spectrograph? design. | Pika UV 330 - 800 nm Ultraviolet + Visible The Pika UV (formerly NUV2) is a hyperspectral camera that scans the Visible and Near Ultraviolet (VIS+NUV) spectral range. An optimized objective lens provides excellent imaging throughout the entire spectral range. Because halogen lights have low output in much of the NUV, Resonon offers an NUV lighting module to augment illumination for our desktop system. The Pika UV can be used in our airborne, laboratory, and outdoor hyperspectral systems, as well as standalone or integrated into your system. | HySpex Baldur S-384 N Baldur S-384 N covers the spectral range from 960-2500 nm. All Baldur cameras are Nyquist cameras giving a spectral resolution of 2 spectral bands while capturing 4 times as much light as the classic systems. To ensure that the most information per framerate is provided, the spectral resolution is kept very close to 2 bands. Additionally, the spatial resolution of Baldur S-384 N is better than 1.5 pixels, yielding a very sharp camera. | Pika IR-L+ 925 - 1700 nm Lightweight, High-Precision Infrared The Pika IR-L+ imager is a high spatial and spectral resolution Near-Infrared (925-1,700 nm) imager in a lightweight, compact format. It is well suited for field research, yet compatible with all imaging platforms (airborne, benchtop, or outdoor). For a compact, lightweight Visible light spectral range option, please see the Pika L. For higher imaging speeds, please see the Pika IR-L. | Pika L 400 - 1000 nm Lightweight, Compact VNIR The Pika L is a lightweight, compact hyperspectral camera that covers the Visible + Near-Infrared (VNIR) spectral range. It is our most popular imager for remote sensing applications. The Pika L can be used in our airborne, laboratory, and outdoor hyperspectral systems, as well as standalone or integrated into your system. |
Description | spatial resolution = up to 1200 x 640 px (0.8 Mpx RAW per band) spectral resolution = 100 bands spectral range = 1100-1650 nm FWHM (full width at half maximum) = ~ 10-15 nm (collimated) acquisition speed = -2 to -10 seconds, depending on acquisition parameters, lighting and object SNR = up to 600:1 software = HSI SNAPSCAN software for raw image acquisition, data pre-processing, hypercube visualization and classification; C and Python API for acquisition and data pre-processing in custom software software scanning modes = Digital TDI (up to 4 stages max)/ Multi-exposures (1-40)/ HDR exposures (1-10)/ Digital binning (2 x 2, 3 x 3, 4 x 4)/ Spectral ROI - Region of Interest/ Spatial ROI - Region of Interest dynamic range = 13 bit optics = standard C-mount; 16/25/35/50 mm lenses available smile & keystone = software-corrected interface = USB 3.0 + GPIO for triggering (TTL) cooling = passive & active cooling (fan-based + TEC) ambient temperature = -5?C to 50?C (operation), -20?C to 60?C (storage) mechanical = integrated mechanical shutter for automatic dark-counts, tripod mount (???- 20) + side-mounting M5 holes dimensions (L x W x H) = 9 x 9 x 15 cm weight = 895 g (without optics) hyperspectral software compatibility = output in standard ENVI hyperspectral data format | Spectral Range (nm) = 330 - 800 Spectral Channels = 255 Spectral Bandwidth (nm) = 1.8 Spectral Resolution - FWHM (nm) = 2.8 Spatial Pixels = 1500 Max Frame Rate (fps) = 142 f/# = 2.8 InterfaceUSB = 3.0 Dimensions (mm) = 230 x 107 x 85 Weight, w/o lens (kg) = 2.27 | Spectral Range = 960 - 2500nm Spectral bands = 288 Max speed* = 500 fps Spectral sampling = 5.45 nm Spectral FWHM <2 bands Spatial FWHM <1.3 pixels Spatial pixels = 384 Keystone <15% of a pixel Smile <15% of band FOV = 16? / 40? Bit resolution = 16 bit Noise floor = 150 e- Peak SNR >1100 Dynamic range = 7500 ROI* = All bands can be selected/deselected individually External trigger options LVDS, 5V/12V/24V TTL Dimensions (l-w-h) = 368 - 131 - 175 mm Camera Interface = CameraLink * Reducing the number of spectral channels with ROI will proportionally increase the max framerate | Spectral Range (nm) = 925 - 1700 Spectral Channels = 470 Spectral Bandwidth (nm) = 1.7 Spectral Resolution - FWHM (nm) = 3.8 Spatial Pixels = 640 Max Frame Rate (fps) = 176 f/# = 1.8 Interface = GigE Dimensions (mm) = 210 x 68 x 63 Weight, w/o lens (kg) = 1.01 | Spectral Range (nm) = 400 - 1000 Spectral Channels = 281 Spectral Bandwidth (nm) = 2.1 Spectral Resolution - FWHM (nm) = 3.3 Spatial Pixels = 900 Max Frame Rate (fps) = 249 f/# = 2.4 Interface = USB 3.0 Dimensions (mm) = 115 x 104 x 66 Weight, w/o lens (kg) = 0.64 |
Leave a Reply