HySpex Baldur V-1024 N
Baldur V-1024 N covers the full VNIR spectral range from 400-1000nm and is configurable within one octave in the same range.
All Baldur cameras are Nyquist cameras giving a spectral resolution of 2 spectral bands while capturing 4 times as much light as the classic systems. To ensure that the most information per framerate is provided, the spectral resolution is kept very close to 2 bands. Additionally, the spatial resolution of Baldur V-1024 N is better than 1.7 pixels, yielding a very sharp camera.
HySpex Baldur V-1024 N
VNIR Compare
HySpex Baldur V-1024 N
Spectral Range = 400-800/485-960/400-1000 nm
Spatial pixels = 1024
Spectral bands = 72/88/106
Max speed* = 1000/800/700 fps
Spectral sampling = 5.5 nm
Spectral FWHM <2 bands?
Spatial FWHM < 1.7 pixels
Keystone <15% of a pixel
Smile <15% of band
FOV = 16? / 40?
Bit resolution = 12
Noise floor = 11e
Peak SNR >286
Dynamic range = 2560
ROI* = 8 independent ROIs
Dimensions (l-w-h) = 316 – 105 – 153 mm
Camera Interface = CameraLink
* Reducing the number of spectral channels with ROI will proportionally increase the max framerate
Quick Comparison
| HySpex Baldur V-1024 N remove | Specim AFX17 remove | HySpex Mjolnir V-1240 remove | HySpex Mjolnir S-620 remove | HySpex Baldur S-384 N remove | Resonon Pika IR remove | |
|---|---|---|---|---|---|---|
| Name | HySpex Baldur V-1024 N remove | Specim AFX17 remove | HySpex Mjolnir V-1240 remove | HySpex Mjolnir S-620 remove | HySpex Baldur S-384 N remove | Resonon Pika IR remove |
| Image | ||||||
| Rating | ||||||
| Content | HySpex Baldur V-1024 N Baldur V-1024 N covers the full VNIR spectral range from 400-1000nm and is configurable within one octave in the same range. All Baldur cameras are Nyquist cameras giving a spectral resolution of 2 spectral bands while capturing 4 times as much light as the classic systems. To ensure that the most information per framerate is provided, the spectral resolution is kept very close to 2 bands. Additionally, the spatial resolution of Baldur V-1024 N is better than 1.7 pixels, yielding a very sharp camera. | Specim AFX17 Specim AFX17 is a NIR hyperspectral imaging solution with an HSI camera, a compact and powerful computer, and a high-end GNSS/IMU unit in a compact enclosure that can be installed on multiple drone types. | HySpex Mjolnir V-1240 The HySpex Mjolnir V-1240 hyperspectral imaging system for UAVs provides a unique combination of small form factor and low mass, combined with high-performance specifications and scientific grade data quality. With a weight of less than 4 kg and less than 50 W power consumption, HySpex Mjolnir V-1240 is very well suited for a wide range of UAVs. The system is also compatible with several off-the-shelf gimbals. NEO offers high-performance unmanned aerial vehicles, fully integrated with the HySpex Mjolnir V-1240. The UAV is fitted with a standard battery package allowing up to 30 minutes of flight time. All HySpex Mjolnir systems can also be mounted on a tripod and rotation stage for ground use. | HySpex Mjolnir S-620 The HySpex Mjolnir S-620 hyperspectral imaging system for UAVs is the SWIR version of the Mjolnir camera series. Similar to the VNIR version, it provides a unique combination of small form factor and low mass, combined with high-performance specifications and scientific grade data quality. With a weight of less than 4.5 kg and less than 50 W power consumption, HySpex Mjolnir S-620 is very well suited for a wide range of UAVs. NEO offers high-performance unmanned aerial vehicles, fully integrated with the HySpex Mjolnir S-620. The UAV is fitted with a standard battery package allowing up to 30 minutes of flight time. All HySpex Mjolnir systems can also be mounted on a tripod and rotation stage for ground use. | HySpex Baldur S-384 N Baldur S-384 N covers the spectral range from 960-2500 nm. All Baldur cameras are Nyquist cameras giving a spectral resolution of 2 spectral bands while capturing 4 times as much light as the classic systems. To ensure that the most information per framerate is provided, the spectral resolution is kept very close to 2 bands. Additionally, the spatial resolution of Baldur S-384 N is better than 1.5 pixels, yielding a very sharp camera. | Pika IR 900 - 1700 nm High-Speed Infrared The Pika IR (formerly Pika NIR-320) is a high-speed, cost-effective hyperspectral camera that covers the Near-Infrared (NIR) spectral range. It is our most popular imager for machine vision applications. The Pika IR can be used in our airborne, laboratory, and outdoor hyperspectral systems, as well as standalone or integrated into your system. |
| Description | Spectral Range = 400-800/485-960/400-1000 nm Spatial pixels = 1024 Spectral bands = 72/88/106 Max speed* = 1000/800/700 fps Spectral sampling = 5.5 nm Spectral FWHM <2 bands? Spatial FWHM < 1.7 pixels Keystone <15% of a pixel Smile <15% of band FOV = 16? / 40? Bit resolution = 12 Noise floor = 11e Peak SNR >286 Dynamic range = 2560 ROI* = 8 independent ROIs Dimensions (l-w-h) = 316 - 105 - 153 mm Camera Interface = CameraLink * Reducing the number of spectral channels with ROI will proportionally increase the max framerate | Spectral Range = 900 - 1700 nm Spectral sampling = 3.5 nm Spectral resolution = 8.0 nm Fore lens focal length = 18 mm Field of view = 38 deg F/# = 1.7 Spectral bands = 224 Binned by 2 Spatial pixels = 640 Spectral binning options = 1, 2, 4, 8 Spatial binning options = 1, 2 Multiple ROI = User-selectable Maximum frame rate = 670 fps, Full frame Dynamic range = 3400 SNR = 1200:1 Binned by 1 spectrally, 1 spatially Power input = 10-30 VDC Use the supplied battery or drone/gimbal power Power consumption = 24 W, Typical Connectors = ANT, DC IN, ETH GPS Antenna, Power In, Web UI / Data download Storage temperature = -20 ? +50C Operating temperature = +5 ? +40C Relative humidity = 5 - 90 %, Non-condensing Drone options = Multirotor with gimbal/Multirotor, no gimbal/Fixed Wing UAV. Any drone with adequate payload capacity can be used Gimbal = Optimized for MoVI pro. Other suitable gimbals may also be used Gimbal weight = 2.2 - 2.7 kg ,Typical gimbal solution Operating height = 50 - 150 m. Typical, local limitations apply GNSS/IMU = Trimble APX-15 GPS Antenna = Trimble AV 14 Internal Memory = 512GB SSD Dimensions (W x H x L) = 131 x 152 x 202 mm Weight (without gimbal) = 2.4 kg Weight (with gimbal = 5.1 kg. Typical gimbal solution | Spectral range = 400 - 1000 nm Spatial pixels = 1240 Spectral channels and sampling = 200 bands @ 3 nm F-number = F1.8 FOV = 20? Pixel FOV across/along = 0.27/0.27 mrad Bit resolution = 12 bit Noise floor = 2.3 e- Dynamic range = 4400 Peak SNR (at full resolution) > 180 Max speed (at full resolution) = 285 fps Power consumption = 50 W Dimensions (l-w-h) = 250 - 175 - 170 mm Weight < 4 kg *Includes IMU/GPS and DAU - <6.5 kg including standard battery | Spectral range = 970 - 2500 nm Spatial pixels = 620 Spectral channels and sampling = 300 bands @ 5.1 nm F-number = F1.9 FOV = 20? Pixel FOV across/along = 0.54/0.54 mrad Bit resolution = 16 bit Noise floor = 80 e- Dynamic range = 10000 Peak SNR (at full resolution) > 900 Max speed (at full resolution) = 170 fps Power consumption* = 50 W Dimensions (l-w-h)* = 254 - 175 - 170 mm Weight* < 4.5 kg *Includes IMU/GPS and DAU - <5 kg including standard battery | Spectral Range = 960 - 2500nm Spectral bands = 288 Max speed* = 500 fps Spectral sampling = 5.45 nm Spectral FWHM <2 bands Spatial FWHM <1.3 pixels Spatial pixels = 384 Keystone <15% of a pixel Smile <15% of band FOV = 16? / 40? Bit resolution = 16 bit Noise floor = 150 e- Peak SNR >1100 Dynamic range = 7500 ROI* = All bands can be selected/deselected individually External trigger options LVDS, 5V/12V/24V TTL Dimensions (l-w-h) = 368 - 131 - 175 mm Camera Interface = CameraLink * Reducing the number of spectral channels with ROI will proportionally increase the max framerate | Spectral Range (nm) = 900 - 1700 Spectral Channels = 168 Spectral Bandwidth (nm) = 4.8 Spectral Resolution - FWHM (nm) = 8.8 Spatial Pixels = 320 Max Frame Rate (fps) = 508 f/# = 1.8 Interface = GigE Dimensions (mm) = 264 x 115 x 88 Weight, w/o lens (kg) = 2.95 |
Leave a Reply