HySpex Baldur S-640i N
Baldur S-640i N covers the spectral range from 950-1730nm.
All Baldur cameras are Nyquist cameras giving a spectral resolution of 2 spectral bands while capturing 4 times as much light as the classic systems. To ensure that the most information per framerate is provided, the spectral resolution is kept very close to 2 bands. Additionally, the spatial resolution of Baldur S-640i N is better than 1.5 pixels, yielding a very sharp camera.
HySpex Baldur S-640i N
SWIR Compare
HySpex Baldur S-640i N
Spectral Range = 950 – 1730 nm
Spectral bands = 232
Max speed* = 500 fps
Spectral sampling = 3.36 nm
Spectral FWHM <2 bands
Spatial FWHM <1.5 pixels
Spatial pixels = 640
Keystone <20% of a pixel
Smile <20% of band
FOV = 16? / 40?
Bit resolution = 12 bit
Noise floor = HG:8.5/MG:32/LG:270 e-
Peak SNR = HG:150/MG:275/LG:800
Dynamic range = HG:2650/MG:2360/LG:2360
ROI* = All bands can be selected/deselected individually
External trigger options = LVDS, 5V/12V/24V TTL
Dimensions (l-w-h) = 364 - 105 - 153 mm
Camera Interface = GigE
* Reducing the number of spectral channels with ROI will proportionally increase the max framerate
Quick Comparison
HySpex Baldur S-640i N remove | Specim AFX17 remove | Resonon Pika UV remove | Resonon Pika IR+ remove | Specim AFX10 remove | HySpex Baldur S-384 N remove | |
---|---|---|---|---|---|---|
Name | HySpex Baldur S-640i N remove | Specim AFX17 remove | Resonon Pika UV remove | Resonon Pika IR+ remove | Specim AFX10 remove | HySpex Baldur S-384 N remove |
Image | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
Rating | ||||||
Content | HySpex Baldur S-640i N Baldur S-640i N covers the spectral range from 950-1730nm. All Baldur cameras are Nyquist cameras giving a spectral resolution of 2 spectral bands while capturing 4 times as much light as the classic systems. To ensure that the most information per framerate is provided, the spectral resolution is kept very close to 2 bands. Additionally, the spatial resolution of Baldur S-640i N is better than 1.5 pixels, yielding a very sharp camera. | Specim AFX17 Specim AFX17 is a NIR hyperspectral imaging solution with an HSI camera, a compact and powerful computer, and a high-end GNSS/IMU unit in a compact enclosure that can be installed on multiple drone types. | Pika UV 330 - 800 nm Ultraviolet + Visible The Pika UV (formerly NUV2) is a hyperspectral camera that scans the Visible and Near Ultraviolet (VIS+NUV) spectral range. An optimized objective lens provides excellent imaging throughout the entire spectral range. Because halogen lights have low output in much of the NUV, Resonon offers an NUV lighting module to augment illumination for our desktop system. The Pika UV can be used in our airborne, laboratory, and outdoor hyperspectral systems, as well as standalone or integrated into your system. | Pika IR+ 900 - 1700 nm High-Precision Infrared The Pika IR+ (formerly Pika NIR-640) is a high-performance hyperspectral camera that covers the Near-Infrared (NIR) spectral range. It has high spatial and spectral resolutions and is often used for infrared laboratory applications. The Pika IR+ can be used in our airborne, laboratory, and outdoor hyperspectral systems, as well as standalone or integrated into your system. | Specim AFX10 Specim AFX10 is a VNIR hyperspectral imaging solution with an HSI camera, a small and powerful computer and a high-end GNSS/IMU unit in a compact enclosure that can be installed on multiple drone types. | HySpex Baldur S-384 N Baldur S-384 N covers the spectral range from 960-2500 nm. All Baldur cameras are Nyquist cameras giving a spectral resolution of 2 spectral bands while capturing 4 times as much light as the classic systems. To ensure that the most information per framerate is provided, the spectral resolution is kept very close to 2 bands. Additionally, the spatial resolution of Baldur S-384 N is better than 1.5 pixels, yielding a very sharp camera. |
Description | Spectral Range = 950 - 1730 nm Spectral bands = 232 Max speed* = 500 fps Spectral sampling = 3.36 nm Spectral FWHM <2 bands Spatial FWHM <1.5 pixels Spatial pixels = 640 Keystone <20% of a pixel Smile <20% of band FOV = 16? / 40? Bit resolution = 12 bit Noise floor = HG:8.5/MG:32/LG:270 e- Peak SNR = HG:150/MG:275/LG:800 Dynamic range = HG:2650/MG:2360/LG:2360 ROI* = All bands can be selected/deselected individually External trigger options = LVDS, 5V/12V/24V TTL Dimensions (l-w-h) = 364 - 105 - 153 mm Camera Interface = GigE * Reducing the number of spectral channels with ROI will proportionally increase the max framerate | Spectral Range = 900 - 1700 nm Spectral sampling = 3.5 nm Spectral resolution = 8.0 nm Fore lens focal length = 18 mm Field of view = 38 deg F/# = 1.7 Spectral bands = 224 Binned by 2 Spatial pixels = 640 Spectral binning options = 1, 2, 4, 8 Spatial binning options = 1, 2 Multiple ROI = User-selectable Maximum frame rate = 670 fps, Full frame Dynamic range = 3400 SNR = 1200:1 Binned by 1 spectrally, 1 spatially Power input = 10-30 VDC Use the supplied battery or drone/gimbal power Power consumption = 24 W, Typical Connectors = ANT, DC IN, ETH GPS Antenna, Power In, Web UI / Data download Storage temperature = -20 ? +50C Operating temperature = +5 ? +40C Relative humidity = 5 - 90 %, Non-condensing Drone options = Multirotor with gimbal/Multirotor, no gimbal/Fixed Wing UAV. Any drone with adequate payload capacity can be used Gimbal = Optimized for MoVI pro. Other suitable gimbals may also be used Gimbal weight = 2.2 - 2.7 kg ,Typical gimbal solution Operating height = 50 - 150 m. Typical, local limitations apply GNSS/IMU = Trimble APX-15 GPS Antenna = Trimble AV 14 Internal Memory = 512GB SSD Dimensions (W x H x L) = 131 x 152 x 202 mm Weight (without gimbal) = 2.4 kg Weight (with gimbal = 5.1 kg. Typical gimbal solution | Spectral Range (nm) = 330 - 800 Spectral Channels = 255 Spectral Bandwidth (nm) = 1.8 Spectral Resolution - FWHM (nm) = 2.8 Spatial Pixels = 1500 Max Frame Rate (fps) = 142 f/# = 2.8 InterfaceUSB = 3.0 Dimensions (mm) = 230 x 107 x 85 Weight, w/o lens (kg) = 2.27 | Spectral Range (nm) = 900 - 1700 Spectral Channels = 336 Spectral Bandwidth (nm) = 2.4 Spectral Resolution - FWHM (nm) = 5.6 Spatial Pixels = 640 Max Frame Rate (fps) = 240 f/# = 1.8 Interface = GigE Dimensions (mm) = 264 x 115 x 88 Weight, w/o lens (kg) = 2.95 | Spectral Range = 400 - 1000 nm Spectral sampling = 2.68 nm Spectral resolution = 5.5 nm Fore lens focal length = 15 mm Field of view = 38 deg F/# = 1.7 Spectral bands = 224 Binned by 2 Spatial pixels = 1024 Spectral binning options = 2, 4, 8 Spatial binning options = 1, 2 Multiple ROI = User-selectable Maximum frame rate = 330 fps Full frame Dynamic range = 1420 SNR = 400:1 2 spectral binning, 1 spatial binning Power input = 10-30 VDC. Use separate battery or UAV/gimbal power Power consumption = 17 W Typical Connectors = ANT, DC IN, ETH GPS Antenna, Power In, Web UI / Data download Storage temperature = -20 ? +50C Operating temperature = +5 ? +40C Relative humidity = 5 - 90 %. Non-condensing Drone options = Multirotor with gimbal/ Multirotor, no gimbal/ Fixed Wing UAV. Any drone with adequate payload capacity can be used. Gimbal = Optimized for MoVI pro. Other suitable gimbals may also be used Gimbal weight = 2.2 - 2.7 kg. Typical gimbal solution Operating height = 15 - 150 m. Typical, local limitations may apply GNSS/IMU = Trimble APX-15 GPS Antenna = Trimble AV 14 Internal Memory = 512GB SSD Dimensions (W x H x L) = 131 x 152 x 202 mm Weight (without gimbal) = 2.1 kg Weight (with gimbal) = 4.8 kg. Typical gimbal solution | Spectral Range = 960 - 2500nm Spectral bands = 288 Max speed* = 500 fps Spectral sampling = 5.45 nm Spectral FWHM <2 bands Spatial FWHM <1.3 pixels Spatial pixels = 384 Keystone <15% of a pixel Smile <15% of band FOV = 16? / 40? Bit resolution = 16 bit Noise floor = 150 e- Peak SNR >1100 Dynamic range = 7500 ROI* = All bands can be selected/deselected individually External trigger options LVDS, 5V/12V/24V TTL Dimensions (l-w-h) = 368 - 131 - 175 mm Camera Interface = CameraLink * Reducing the number of spectral channels with ROI will proportionally increase the max framerate |
Leave a Reply