HinaLea?s 4250 VNIR system represents the next generation of intelligent hyperspectral imagers. Based on
front-staring Fabry Perot technology, the 4250 includes
hardware and software required to support a broad range of
hyperspectral imaging applications. A tunable filter that sequentially selects spectral bands is placed in front of the sensor
and generates the hyper-cube by collecting complete images at
each spectral band-pass.
The 4250 captures a complete high-spatial-resolution image
data-cube across the visible to near infrared spectral range at 4
nm resolution in seconds, but can also be programmed to scan
a subset of bands. This subset can be dynamically controlled
based on the application and object to be imaged.
Thanks to its design, the HinaLea 4250 offers high spectral
and spatial resolution without the image uniformity challenges
that line-scanning hyperspectral and patterned filter snapshot
multi-spectral imagers present. In addition, HinaLea has developed its hyperspectral technology to be small, lightweight, and
affordable for straightforward deployment in a lab setting, in a
production environment, or in the field.
Hinalea VNIR 4250
Hinalea VNIR 4250
Spectral range = 400-1000 nm
Spectral bands = 300 nominal
Spectral resolution = 4 nm (FWHM)
Dynamic range = User selectable 8 or 16 bit
Standard lens = 15? Field of View (FOV) – 150 mm to ?/ 30? Field of View (FOV) – 150 mm to ?
Input voltage = 110 VAC at 60Hz / 220 VAC at 50Hz
Data interfaces = USB 2.0, 3.0
Operating temperature = 15? to 45? C
Humidity = 65% non-condensing
Sensor spatial resolution = 2.3 MP *
Illumination = Optional
Dimensions (L x W x H) = 197.7 mm x 81 mm x 78 mm.15? FOV lens adds 45.5mm when focused at infinity/ 30? FOV lens adds 130.7mm when focused at infinity
Weight = 1.25 kg
* RGGB sensor; effective monochromatic equivalent 588,544 pixels without de-mosaicing
Quick Comparison
Hinalea VNIR 4250 remove | HySpex SWIR-384 remove | HySpex VNIR-1800 remove | Specim SWIR remove | Specim FX17 remove | HySpex VNIR-3000N remove | |
---|---|---|---|---|---|---|
Name | Hinalea VNIR 4250 remove | HySpex SWIR-384 remove | HySpex VNIR-1800 remove | Specim SWIR remove | Specim FX17 remove | HySpex VNIR-3000N remove |
Image | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
Rating | ||||||
Content | HinaLea?s 4250 VNIR system represents the next generation of intelligent hyperspectral imagers. Based on front-staring Fabry Perot technology, the 4250 includes hardware and software required to support a broad range of hyperspectral imaging applications. A tunable filter that sequentially selects spectral bands is placed in front of the sensor and generates the hyper-cube by collecting complete images at each spectral band-pass. The 4250 captures a complete high-spatial-resolution image data-cube across the visible to near infrared spectral range at 4 nm resolution in seconds, but can also be programmed to scan a subset of bands. This subset can be dynamically controlled based on the application and object to be imaged. Thanks to its design, the HinaLea 4250 offers high spectral and spatial resolution without the image uniformity challenges that line-scanning hyperspectral and patterned filter snapshot multi-spectral imagers present. In addition, HinaLea has developed its hyperspectral technology to be small, lightweight, and affordable for straightforward deployment in a lab setting, in a production environment, or in the field. | HySpex SWIR-384 The HySpex SWIR-384 hyperspectral camera is developed for field, laboratory, and airborne applications. The state of the art MCT sensor with cooling down to 150K yields low background noise, high dynamic range, and exceptional SNR levels. With a max frame rate of 400 fps, combined with an aberration-corrected optical system with high optical throughput (f/2), the data quality, speed, and sensitivity is truly state of the art. A wide range of close-up lenses allows the use of the camera at working distances ranging from a few centimeters with a spatial resolution of 53 ?m to infinity e.g. airborne remote sensing. | HySpex VNIR-1800 The HySpex VNIR-1800 hyperspectral camera is developed for field, laboratory, and airborne applications. HySpex VNIR-1800 utilizes a cutting edge actively cooled and stabilized scientific CMOS detector. This makes VNIR-1800 the ideal camera for high-end data acquisitions where high radiometric accuracy is required. The dynamic range of 20 000 ensures outstanding SNR levels even in darker areas of an image of highly dynamic scenes. With a max frame rate of 260 fps, combined with aberration-corrected optics and high optical throughput (f/2.5), HySpex VNIR-1800 offers a unique combination of data quality, high speed, and sensitivity. A wide range of close-up lenses allows the use of the camera at working distances ranging from a few centimeters with a spatial resolution of 24 ?m to infinity e.g. airborne remote sensing. | SWIR SWIR is a high-speed short-wave infrared hyperspectral camera that operates in the 1000-2500 nm range. It has 384 spatial pixels and achieves image rates of up to 400 frames per second using a CameraLink connection. To assure indoor/outdoor usage in varying conditions, it now has rugged weather-proof IP54 casing and temperature-stabilized optics but still uses less power than before, only 50W nominal. Its temperature-stabilized optics provide stability and sensitivity required in the most challenging near-infrared chemical imaging applications, from pharmaceutical quality assurance to food and agriculture analysis. The SWIR camera meets the highest requirements in the lab, industry, and field. | Specim FX17 Specim FX17 hyperspectral camera operates in the near-infrared region and can literally see the invisible. It can reveal the targets? chemical composition, moisture, and foreign objects that are invisible to the human eye. Specim FX17 can, for example, detect different plastic types for recycling and measure the sugar level of fruits and vegetables and the moisture percentage of baked goods. | HySpex VNIR-3000 N HySpex VNIR-3000 N is developed for field, laboratory, and airborne applications. HySpex VNIR-3000 N utilizes the same spectrograph as the other classical HySpex VNIR models. With a pixel size of 3.45?m, compared to 6. 5?m for VNIR-1800, HySpex VNIR-3000 N will have less than 1.6 pixels per FWHM of the PSF spatially and less than 1.8 bands spectrally, ensuring that narrow band features will be resolved equally for all cameras. With 3000 spatial pixels, 300 bands and a noise floor of 2.4e-, HySpex VNIR-3000N will provide outstanding SNR levels in dark environments. The camera is offered with a USB connection, allowing camera operation from any computer and reducing the cost of supplementing equipment. To visualize that the camera has a wider PSF per pixel and band relative to our normal extremely sharp cameras, we have added an N for Nyquist to the model name. |
Description | Spectral range = 400-1000 nm Spectral bands = 300 nominal Spectral resolution = 4 nm (FWHM) Dynamic range = User selectable 8 or 16 bit Standard lens = 15? Field of View (FOV) - 150 mm to ?/ 30? Field of View (FOV) - 150 mm to ? Input voltage = 110 VAC at 60Hz / 220 VAC at 50Hz Data interfaces = USB 2.0, 3.0 Operating temperature = 15? to 45? C Humidity = 65% non-condensing Sensor spatial resolution = 2.3 MP * Illumination = Optional Dimensions (L x W x H) = 197.7 mm x 81 mm x 78 mm.15? FOV lens adds 45.5mm when focused at infinity/ 30? FOV lens adds 130.7mm when focused at infinity Weight = 1.25 kg * RGGB sensor; effective monochromatic equivalent 588,544 pixels without de-mosaicing | Spectral range = 930 - 2500 nm Spatial pixels = 384 Spectral channels = 288 Spectral sampling = 5.45 nm FOV* = 16? Pixel FOV across/along* = 0.73/0.73 mrad Bit resolution = 16 bit Noise floor = 150 e- Dynamic range = 7500 Peak SNR (at full resolution) > 1100 Max speed (at full resolution) = 400 fps Power consumption = 30 W Dimensions (l-w-h) = 38 - 12- 17.5 cm Weight = 5.7 kg Camera Interface = CameraLink *Can be doubled with FOV expander | Spectral range = 400 - 1000 nm Spatial pixels = 1800 Spectral channels = 186 Spectral sampling = 3.26 nm FOV* = 17? Pixel FOV across/along* = 0.16/0.32 mrad Bit resolution = 16 bit Noise floor = 2.4 e- Dynamic range = 20000 Peak SNR (at full resolution) > 255 Max speed (at full resolution) = 260 fps Power consumption = 30 W Dimensions (l-w-h) = 39 - 9.9 - 15 cm Weight = 5.0 kg Camera Interface = CameraLink *Can be doubled with FOV expander | Spectral range = 1000 - 2500 nm Spectral resolution (FWHM) = 12 nm (30 ?m slit) Spectral sampling / pixel = 5.6 nm F/# = F/2.0 Slit width = 30 ?m (50 or 80 ?m optional) Effective slit length = 9.2 mmRICAL CHARACTERISTICS Sensor = Cryogenically cooled MCT detector Spatial pixels = 384 Spectral bands = 288 Pixel size = 24 x 24 ?m Detector cooling = Stirling, 25 000 h MTTF Signal-to-noise ratio = 1050:1 (at max. signal level) Camera output = 16 bit CameraLink Data cable Length = 5m Camera control = USB/RS232 Frame grabber = NI-1433 Epix grabber = E4* Frame rate = 450 fps (maximum full frame) Exposure time range = 0.1 - 20 ms Power consumption = Nominal < 50 W Input voltage = 18 - 36 VNICAL CHARACTERISTICS Size (L x W x H) = Sensor 545 x 176 x 178 mm, PSU & control unit 300 x 190 x 130 mm Weight = 14 kg & approx. 5 kg Body = Anodized aluminium with mounting screwholes Lens mount = Standard C-mount Shutter = Electro-mechanicalONMENTAL CHARACTERISTICS Storage = -20... +50 ?C Operating = +5... +40 ?C non-condensing | Spectral Range = 900-1700 nm Spectral resolution (FWHM) = 8 nm (mean) Spectral sampling/pixel = 3.5 nm Spectral bands = 224 With default binning Numerical aperture = 1.7 With default lens Optics magnification = 0.80 Effective pixel size = 18.7 ?m At fore lens image plane Effective slit width Physical width = 42?m. Projection on sensor = 32 ?m (M=1.3) At fore lens image plane Effective slit length = 12.0 mm At fore lens image plane SNR @ max. signal = 1000:1 Bit depth = 12 Maximum frame rate = 670 (FX17)/ 527 (FX17e) FPS full range Binning = 1,2,4 spectral and spatial Default: 1 spectral x 1 spatial ROI = Freely selectable multiple bands of interest. Minimum height of ROI is two 1-binned rows. Maximum frame rate is determined by total number of rows between first row of first mROI and last row of last mROI and the total number of rows included in the mMROI?s. Pixel operability = 99.5%. Allowed clusters: Size 2-6 pixels: N/A/ Size 7-12 pixels: ? 6/ Size 13-19 pixels: ? 2/ Size 20-35 pixels: ? 1/ Size > 35: 0 Image corrections = Non uniformity correction/ Bad pixel replacement/ Automatic Image Enhancement (AIE)/One point NUC. AIE: Unified spectral calibration + corrected smile and keystone aberrations Sensor material = InGaAs Sensor cooling = TEC Full well capacity = 1.44 Me- Read-out modes = IWR / ITR Optics temperature = Passive Default is 20 degrees Celsius Lens mount = Custom mount Fore lens FOV options = 12 deg/38 deg (default)/53 deg/66 deg/75 deg/90 deg. Only the default lens is specifically designed for FX17. With other lens options, optical parameters may vary. Camera digital data output/control interface = GigE Vision, CameraLink Camera control protocols = GenICam, ASCII Power input = 12 V DC (+-10%) Power consumption = Max 24 W Connectors = Industrial Ethernet OR CameraLink (standard MDR 26-pin). Power - Fischer 12pin DBPLU1031Z012|130G IP = IP52 Dimensions (L x W x H) = 150 x 75 x 85 mm Mounting surface option on three sides. Mounting kit adds 24 mm distance on mounting side. Weight = 1.56 kg Storage temperature = -20 ... +50 oC (non-condensing) Operating temperature = +5 ... +40 oC (non-condensing) Relative humidity = 5% - 95% (non-condensing) | Spectral range = 400 - 1000 nm Spatial pixels = 3000 Spectral channels = 300 Spectral sampling = 2.0 nm FOV* = 16? Pixel FOV across/along* = 0.096/0.32 mrad Bit resolution = 12 bit Noise floor = 2.37 e- Dynamic range = 11000 Peak SNR (at full resolution) > 170 Max speed (at full resolution) = 117 fps Power consumption = 30 W Dimensions (l-w-h) = 39 - 9.9- 15 cm Weight = 5.0 kg Camera Interface = USB3 *Can be doubled with FOV expander |
Reviews
There are no reviews yet.