Micro-Hyperspec NIR sensors come in either 320- or 640-spatial-pixel models for field or lab use. They are CE certified, small and light with Base CameraLink interface and low power requirements. However, many researchers who undertake remote-sensing missions using drones or field kits will choose the Co-Aligned VNIR-SWIR system because of its greater wavelength range.
Headwall Micro-Hyperspec NIR 320
Quick Comparison
Headwall Micro-Hyperspec NIR 320 remove | HySpex Mjolnir VS-620 remove | HySpex Baldur S-384 N remove | HySpex Baldur S-640i N remove | Specim FX10 remove | HySpex Baldur V-1024 N remove | |
---|---|---|---|---|---|---|
Name | Headwall Micro-Hyperspec NIR 320 remove | HySpex Mjolnir VS-620 remove | HySpex Baldur S-384 N remove | HySpex Baldur S-640i N remove | Specim FX10 remove | HySpex Baldur V-1024 N remove |
Image | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
Rating | ||||||
Content | Micro-Hyperspec NIR sensors come in either 320- or 640-spatial-pixel models for field or lab use. They are CE certified, small and light with Base CameraLink interface and low power requirements. However, many researchers who undertake remote-sensing missions using drones or field kits will choose the Co-Aligned VNIR-SWIR system because of its greater wavelength range. | HySpex Mjolnir VS-620 For applications requiring low mass, combined with high-performance specifications and scientific grade data quality on the full VNIR-SWIR range, HySpex Mjolnir VS-620 is an ideal solution. Sharing the onboard data acquisition unit and navigation system, HySpex Mjolnir VS-620 is both space-efficient and cost-effective. The VNIR and SWIR optical axis are coaligned in the along-track direction, assuring perfect coregistration in the flight direction. In addition to the high-quality hyperspectral data cube, covering the spectral range from 400 - 2500 nm, with 490 bands, double resolution data in the VNIR range is always readily available. With smile and keystone less than 0.1 pixels for each spectral range, the merged Mjolnir VS-620 data product will have coregistration/keystone better than 0.2 pixels for the full VNIR-SWIR range. | HySpex Baldur S-384 N Baldur S-384 N covers the spectral range from 960-2500 nm. All Baldur cameras are Nyquist cameras giving a spectral resolution of 2 spectral bands while capturing 4 times as much light as the classic systems. To ensure that the most information per framerate is provided, the spectral resolution is kept very close to 2 bands. Additionally, the spatial resolution of Baldur S-384 N is better than 1.5 pixels, yielding a very sharp camera. | HySpex Baldur S-640i N Baldur S-640i N covers the spectral range from 950-1730nm. All Baldur cameras are Nyquist cameras giving a spectral resolution of 2 spectral bands while capturing 4 times as much light as the classic systems. To ensure that the most information per framerate is provided, the spectral resolution is kept very close to 2 bands. Additionally, the spatial resolution of Baldur S-640i N is better than 1.5 pixels, yielding a very sharp camera. | Specim FX10 Specim FX10 is a line-scan hyperspectral camera that operates in the visible and near-infrared (VNIR) region. It is an excellent tool for industrial and scientific applications. The Specim FX10 operates in the 400-1000 nm region, and the color-optimized Specim FX10c in the 400-780 nm region. | HySpex Baldur V-1024 N Baldur V-1024 N covers the full VNIR spectral range from 400-1000nm and is configurable within one octave in the same range. All Baldur cameras are Nyquist cameras giving a spectral resolution of 2 spectral bands while capturing 4 times as much light as the classic systems. To ensure that the most information per framerate is provided, the spectral resolution is kept very close to 2 bands. Additionally, the spatial resolution of Baldur V-1024 N is better than 1.7 pixels, yielding a very sharp camera. |
Description | Spectral Range = 960 - 2500nm Spectral bands = 288 Max speed* = 500 fps Spectral sampling = 5.45 nm Spectral FWHM <2 bands Spatial FWHM <1.3 pixels Spatial pixels = 384 Keystone <15% of a pixel Smile <15% of band FOV = 16? / 40? Bit resolution = 16 bit Noise floor = 150 e- Peak SNR >1100 Dynamic range = 7500 ROI* = All bands can be selected/deselected individually External trigger options LVDS, 5V/12V/24V TTL Dimensions (l-w-h) = 368 - 131 - 175 mm Camera Interface = CameraLink * Reducing the number of spectral channels with ROI will proportionally increase the max framerate | Spectral Range = 950 - 1730 nm Spectral bands = 232 Max speed* = 500 fps Spectral sampling = 3.36 nm Spectral FWHM <2 bands Spatial FWHM <1.5 pixels Spatial pixels = 640 Keystone <20% of a pixel Smile <20% of band FOV = 16? / 40? Bit resolution = 12 bit Noise floor = HG:8.5/MG:32/LG:270 e- Peak SNR = HG:150/MG:275/LG:800 Dynamic range = HG:2650/MG:2360/LG:2360 ROI* = All bands can be selected/deselected individually External trigger options = LVDS, 5V/12V/24V TTL Dimensions (l-w-h) = 364 - 105 - 153 mm Camera Interface = GigE * Reducing the number of spectral channels with ROI will proportionally increase the max framerate | Spectral Range = 400-1000 / 400-780 (c-version) Spectral resolution (FWHM) = 5.5 nm (mean) Spectral sampling/pixel = 2.7 nm, With default binning Spectral bands = 224 / 140 (c-version), With default binning Numerical aperture = 1.7, With default lens Optics magnification = 0.80 Effective pixel size = 19.9x9.97 ?m, At fore lens image plane Effective slit width = 42 ?m, At fore lens image plane Effective slit length = 10.2 mm, At fore lens image plane SNR @ max. signal = 420 : 1 Spatial samples = 1024 Bit depth = 12 Maximum frame rate = 327 FPS full range / 514 FPS full range (c-version) Binning = 2,4,8 spectral and spatial Default: 2 spectral x 1 spatial ROI = Freely selectable multiple bands of interest. Minimum height of ROI is two 1-binned rows. Maximum frame rate is determined by the total number of rows included in the mMROI?s Pixel operability = 99.993% Image corrections = Non uniformity correction/Bad pixel replacement/Automatic Image Enhancement (AIE)/One point NUC. AIE: Unified spectral calibration + corrected smile and keystone aberrations Sensor material = CMOS Sensor cooling = Passive Full well capacity = 90 ke- Read-out modes = IWR / ITR Optics temperature = Passive Lens mount = Custom mount Fore lens FOV options = 12 deg/ 38 deg (default)/ 47 deg/ 51 deg/ 83 deg. Only the default lens is specifically designed for FX10. With other lens options, optical parameters may vary. Camera digital data output/control interface = GigE Vision, CameraLink Camera control protocols = GenICam, ASCII Power input = 12 V DC (+-10%) Power consumption = Max 4 W Connectors = Industrial Ethernet OR CameraLink 26-pin, 0.5? MDR IP = IP52 Dimensions (L x W x H) = 150 x 85 x 71 mm Mounting surface option on three sides. Mounting kit adds 24 mm distance on mounting side. Weight = 1.3 kg Storage temperature = -20 ... +50?C (non-condensing) Operating temperature = +5 ? +40?C (non-condensing) Relative humidity = 5% - 95% (non-condensing) | Spectral Range = 400-800/485-960/400-1000 nm Spatial pixels = 1024 Spectral bands = 72/88/106 Max speed* = 1000/800/700 fps Spectral sampling = 5.5 nm Spectral FWHM <2 bands? Spatial FWHM < 1.7 pixels Keystone <15% of a pixel Smile <15% of band FOV = 16? / 40? Bit resolution = 12 Noise floor = 11e Peak SNR >286 Dynamic range = 2560 ROI* = 8 independent ROIs Dimensions (l-w-h) = 316 - 105 - 153 mm Camera Interface = CameraLink * Reducing the number of spectral channels with ROI will proportionally increase the max framerate |
Reviews
There are no reviews yet.