Content | OCI?-1000 series VIS-NIR hyperspectral imaging cameras are extremely compact, light, and rugged. They cover visible - near-infrared (VIS - NIR) spectral range from 470 - 1000 nm. Unlike conventional hyperspectral imagers which rely on intensive software effort on hyperspectral image cube construction, the innovative design of the OCI?-1000 series imagers feature true push broom and ultrafast data transfer rates, with automatic data capturing and processing, they can move to scan at random speeds. The elegant completely integrated design and manufacturing in our quality certified production facility with master quality control to deliver high precision, superb signal-to-noise, excellent spectral & spatial resolution, and outstanding imaging quality. With the free packed operation software, OCI? - 1000 series hyperspectral cameras are automatic and minimum human intervention. They are ideally catered to various unmanned aerial vehicles/systems (UAV/UAS) and remotely operated vehicles (ROV). BaySpec also provides ready-to-fly hyperspectral solutions. Extreme compactness with uncompromised performance, automatic operation and data processing makes the OCI-UAV a straightforward system for board fields applications such as precision agriculture, geological survey, oceanography, remote sensing, security/defense, and anti-counterfeiting. | HySpex Baldur S-640i N
Baldur S-640i N covers the spectral range from 950-1730nm.
All Baldur cameras are Nyquist cameras giving a spectral resolution of 2 spectral bands while capturing 4 times as much light as the classic systems. To ensure that the most information per framerate is provided, the spectral resolution is kept very close to 2 bands. Additionally, the spatial resolution of Baldur S-640i N is better than 1.5 pixels, yielding a very sharp camera. | SWIR
SWIR is a high-speed short-wave infrared hyperspectral camera that operates in the 1000-2500 nm range. It has 384 spatial pixels and achieves image rates of up to 400 frames per second using a CameraLink connection.
To assure indoor/outdoor usage in varying conditions, it now has rugged weather-proof IP54 casing and temperature-stabilized optics but still uses less power than before, only 50W nominal.
Its temperature-stabilized optics provide stability and sensitivity required in the most challenging near-infrared chemical imaging applications, from pharmaceutical quality assurance to food and agriculture analysis. The SWIR camera meets the highest requirements in the lab, industry, and field. | Pika IR
900 - 1700 nm
High-Speed Infrared
The Pika IR (formerly Pika NIR-320) is a high-speed, cost-effective hyperspectral camera that covers the Near-Infrared (NIR) spectral range. It is our most popular imager for machine vision applications.
The Pika IR can be used in our airborne, laboratory, and outdoor hyperspectral systems, as well as standalone or integrated into your system. | Specim FX10+
The Specim FX10+ is a high-speed line-scan hyperspectral camera optimized for applications requiring fast imaging. Its high resolution ensures accurate and detailed imaging at a rapid pace. Specim FX10+ operates in the visible and near-infrared (VNIR) region from 400 to 1000 nm. | Pika UV
330 - 800 nm
Ultraviolet + Visible
The Pika UV (formerly NUV2) is a hyperspectral camera that scans the Visible and Near Ultraviolet (VIS+NUV) spectral range. An optimized objective lens provides excellent imaging throughout the entire spectral range.
Because halogen lights have low output in much of the NUV, Resonon offers an NUV lighting module to augment illumination for our desktop system.
The Pika UV can be used in our airborne, laboratory, and outdoor hyperspectral systems, as well as standalone or integrated into your system. |
Description | Spectral Range = 600 - 1000 nm
Spectral Resolution = 5 nm FWHM
Number of Spectral Bands = 150
Frame Rate = 120 frames/sec
Dimension = 3 x 3 x 3 cm3
Weight = 45.3 g | Spectral Range = 950 - 1730 nm
Spectral bands = 232
Max speed* = 500 fps
Spectral sampling = 3.36 nm
Spectral FWHM <2 bands
Spatial FWHM <1.5 pixels
Spatial pixels = 640
Keystone <20% of a pixel
Smile <20% of band
FOV = 16? / 40?
Bit resolution = 12 bit
Noise floor = HG:8.5/MG:32/LG:270 e-
Peak SNR = HG:150/MG:275/LG:800
Dynamic range = HG:2650/MG:2360/LG:2360
ROI* = All bands can be selected/deselected individually
External trigger options = LVDS, 5V/12V/24V TTL
Dimensions (l-w-h) = 364 - 105 - 153 mm
Camera Interface = GigE
* Reducing the number of spectral channels with ROI will proportionally increase the max framerate | Spectral range = 1000 - 2500 nm
Spectral resolution (FWHM) = 12 nm (30 ?m slit)
Spectral sampling / pixel = 5.6 nm
F/# = F/2.0
Slit width = 30 ?m (50 or 80 ?m optional)
Effective slit length = 9.2 mmRICAL CHARACTERISTICS
Sensor = Cryogenically cooled MCT detector
Spatial pixels = 384
Spectral bands = 288
Pixel size = 24 x 24 ?m
Detector cooling = Stirling, 25 000 h MTTF
Signal-to-noise ratio = 1050:1 (at max. signal level)
Camera output = 16 bit CameraLink
Data cable Length = 5m
Camera control = USB/RS232
Frame grabber = NI-1433
Epix grabber = E4*
Frame rate = 450 fps (maximum full frame)
Exposure time range = 0.1 - 20 ms
Power consumption = Nominal < 50 W
Input voltage = 18 - 36 VNICAL CHARACTERISTICS
Size (L x W x H) = Sensor 545 x 176 x 178 mm, PSU & control unit 300 x 190 x 130 mm
Weight = 14 kg & approx. 5 kg
Body = Anodized aluminium with mounting screwholes
Lens mount = Standard C-mount
Shutter = Electro-mechanicalONMENTAL CHARACTERISTICS
Storage = -20... +50 ?C
Operating = +5... +40 ?C non-condensing | Spectral Range (nm) = 900 - 1700
Spectral Channels = 168
Spectral Bandwidth (nm) = 4.8
Spectral Resolution - FWHM (nm) = 8.8
Spatial Pixels = 320
Max Frame Rate (fps) = 508
f/# = 1.8
Interface = GigE
Dimensions (mm) = 264 x 115 x 88
Weight, w/o lens (kg) = 2.95 | Spectral Range = 400-1000 nm
Spectral resolution (FWHM) = 15 nm, Typical mean
Spectral sampling/pixel = 6.3 nm, With default binning
Spectral bands = 100, With default binning
Numerical aperture = 1.7, With default lens
Optics magnification = 0.80
Effective pixel size = 19.9x9.97 ?m, At fore lens image plane
Effective slit width = 42 ?m, At fore lens image plane
Effective slit length = 10.2 mm, At fore lens image plane
SNR @ max. signal = 420 : 1
Spatial samples = 1024
Bit depth = 12
Maximum frame rate = 705 FPS full range. With 2-spectral binning (Bands: Max FPS) = 1:9900/5:6500/20:2800/35:1813/70:985
Binning = 2,4,8 spectral and spatial, Default: 2 spectral x 1 spatial
ROI = Freely selectable multiple bands of interest, Minimum height of ROI is two 1-binned rows. Maximum frame rate is determined by the total number of rows included in the mMROI?s
Pixel operability = 99.993%
Image corrections = Non uniformity correction/Bad pixel replacement/Automatic Image Enhancement (AIE). AIE: Unified spectral calibration + corrected smile and keystone aberrations. One point NUC
Sensor material = CMOS
Sensor cooling = Passive
Full well capacity = 90 ke-
Read-out modes = IWR / ITR
Optics temperature = Passive
Lens mount = Custom mount
Fore lens FOV options:12 deg/38 deg (default)/47 deg/51 deg/83 deg. Only the default lens is specifically designed for FX10. With other lens options, optical parameters may vary.
Camera digital data output/control interface = GigE Vision
Camera control protocols = GenICam, ASCII
Power input = 12 V DC (+-10%)
Power consumption = Max 4 W
Connectors = Industrial Ethernet
IP = IP52
Dimensions (L x W x H) 150 x 85 x 71 mm Mounting surface option on three sides.
Mounting kit adds 24 mm distance on mounting side.
Weight 1.3 kg
Storage temperature = -20 ... +50?C (non-condensing)
Operating temperature = +5 ? +40?C (non-condensing)
Relative humidity = 5% - 95% (non-condensing) | Spectral Range (nm) = 330 - 800
Spectral Channels = 255
Spectral Bandwidth (nm) = 1.8
Spectral Resolution - FWHM (nm) = 2.8
Spatial Pixels = 1500
Max Frame Rate (fps) = 142
f/# = 2.8
InterfaceUSB = 3.0
Dimensions (mm) = 230 x 107 x 85
Weight, w/o lens (kg) = 2.27 |
Leave a Reply