HySpex Mjolnir VS-620
For applications requiring low mass, combined with high-performance specifications and scientific grade data quality on the full VNIR-SWIR range, HySpex Mjolnir VS-620 is an ideal solution. Sharing the onboard data acquisition unit and navigation system, HySpex Mjolnir VS-620 is both space-efficient and cost-effective.
The VNIR and SWIR optical axis are coaligned in the along-track direction, assuring perfect coregistration in the flight direction. In addition to the high-quality hyperspectral data cube, covering the spectral range from 400 – 2500 nm, with 490 bands, double resolution data in the VNIR range is always readily available. With smile and keystone less than 0.1 pixels for each spectral range, the merged Mjolnir VS-620 data product will have coregistration/keystone better than 0.2 pixels for the full VNIR-SWIR range.
HySpex Mjolnir VS-620
One response to “HySpex Mjolnir VS-620”
Leave a Reply
Quick Comparison
| HySpex Mjolnir VS-620 remove | Specim AFX17 remove | HySpex VNIR-3000N remove | Hyspex SWIR-640 remove | HySpex SWIR-384 remove | Resonon Pika XC2 remove | |
|---|---|---|---|---|---|---|
| Name | HySpex Mjolnir VS-620 remove | Specim AFX17 remove | HySpex VNIR-3000N remove | Hyspex SWIR-640 remove | HySpex SWIR-384 remove | Resonon Pika XC2 remove |
| Image | ||||||
| Rating | ||||||
| Content | HySpex Mjolnir VS-620 For applications requiring low mass, combined with high-performance specifications and scientific grade data quality on the full VNIR-SWIR range, HySpex Mjolnir VS-620 is an ideal solution. Sharing the onboard data acquisition unit and navigation system, HySpex Mjolnir VS-620 is both space-efficient and cost-effective. The VNIR and SWIR optical axis are coaligned in the along-track direction, assuring perfect coregistration in the flight direction. In addition to the high-quality hyperspectral data cube, covering the spectral range from 400 - 2500 nm, with 490 bands, double resolution data in the VNIR range is always readily available. With smile and keystone less than 0.1 pixels for each spectral range, the merged Mjolnir VS-620 data product will have coregistration/keystone better than 0.2 pixels for the full VNIR-SWIR range. | Specim AFX17 Specim AFX17 is a NIR hyperspectral imaging solution with an HSI camera, a compact and powerful computer, and a high-end GNSS/IMU unit in a compact enclosure that can be installed on multiple drone types. | HySpex VNIR-3000 N HySpex VNIR-3000 N is developed for field, laboratory, and airborne applications. HySpex VNIR-3000 N utilizes the same spectrograph as the other classical HySpex VNIR models. With a pixel size of 3.45?m, compared to 6. 5?m for VNIR-1800, HySpex VNIR-3000 N will have less than 1.6 pixels per FWHM of the PSF spatially and less than 1.8 bands spectrally, ensuring that narrow band features will be resolved equally for all cameras. With 3000 spatial pixels, 300 bands and a noise floor of 2.4e-, HySpex VNIR-3000N will provide outstanding SNR levels in dark environments. The camera is offered with a USB connection, allowing camera operation from any computer and reducing the cost of supplementing equipment. To visualize that the camera has a wider PSF per pixel and band relative to our normal extremely sharp cameras, we have added an N for Nyquist to the model name. | HySpex SWIR-640 The HySpex SWIR-640 hyperspectral camera is developed for field, laboratory, and airborne applications. HySpex SWIR-640 offers high spatial resolution by using a unique MCT sensor. The FPA is cooled to 150K using a sterling cooler, yielding low background noise, high dynamic range, and exceptional SNR levels. The camera offers an aberration-corrected optical system with high optical throughput (f/2.0), the data quality, sensitivity, and resolution is truly state of the art. A wide range of close-up lenses allows the use of the camera at working distances ranging from a few centimeters, with a spatial resolution of 32 ?m, to infinity for e.g. airborne remote sensing. | HySpex SWIR-384 The HySpex SWIR-384 hyperspectral camera is developed for field, laboratory, and airborne applications. The state of the art MCT sensor with cooling down to 150K yields low background noise, high dynamic range, and exceptional SNR levels. With a max frame rate of 400 fps, combined with an aberration-corrected optical system with high optical throughput (f/2), the data quality, speed, and sensitivity is truly state of the art. A wide range of close-up lenses allows the use of the camera at working distances ranging from a few centimeters with a spatial resolution of 53 ?m to infinity e.g. airborne remote sensing. | Pika XC2 400 - 1000 nm High-Precision VNIR The Pika XC2 is a high-resolution hyperspectral camera that covers the Visible + Near-Infrared (VNIR) spectral range. The Pika XC2 has high spatial resolution, best in-class spectral resolution, and excellent imaging quality. Popular in VNIR laboratory applications. The Pika XC2 can be used in our laboratory, and outdoor, and airborne hyperspectral systems, as well as standalone or integrated into your system. |
| Description | Spectral Range = 900 - 1700 nm Spectral sampling = 3.5 nm Spectral resolution = 8.0 nm Fore lens focal length = 18 mm Field of view = 38 deg F/# = 1.7 Spectral bands = 224 Binned by 2 Spatial pixels = 640 Spectral binning options = 1, 2, 4, 8 Spatial binning options = 1, 2 Multiple ROI = User-selectable Maximum frame rate = 670 fps, Full frame Dynamic range = 3400 SNR = 1200:1 Binned by 1 spectrally, 1 spatially Power input = 10-30 VDC Use the supplied battery or drone/gimbal power Power consumption = 24 W, Typical Connectors = ANT, DC IN, ETH GPS Antenna, Power In, Web UI / Data download Storage temperature = -20 ? +50C Operating temperature = +5 ? +40C Relative humidity = 5 - 90 %, Non-condensing Drone options = Multirotor with gimbal/Multirotor, no gimbal/Fixed Wing UAV. Any drone with adequate payload capacity can be used Gimbal = Optimized for MoVI pro. Other suitable gimbals may also be used Gimbal weight = 2.2 - 2.7 kg ,Typical gimbal solution Operating height = 50 - 150 m. Typical, local limitations apply GNSS/IMU = Trimble APX-15 GPS Antenna = Trimble AV 14 Internal Memory = 512GB SSD Dimensions (W x H x L) = 131 x 152 x 202 mm Weight (without gimbal) = 2.4 kg Weight (with gimbal = 5.1 kg. Typical gimbal solution | Spectral range = 400 - 1000 nm Spatial pixels = 3000 Spectral channels = 300 Spectral sampling = 2.0 nm FOV* = 16? Pixel FOV across/along* = 0.096/0.32 mrad Bit resolution = 12 bit Noise floor = 2.37 e- Dynamic range = 11000 Peak SNR (at full resolution) > 170 Max speed (at full resolution) = 117 fps Power consumption = 30 W Dimensions (l-w-h) = 39 - 9.9- 15 cm Weight = 5.0 kg Camera Interface = USB3 *Can be doubled with FOV expander | Spectral range = 960 - 2500 nm Spatial pixels = 640 Spectral channels = 360 Spectral sampling = 4.38 nm FOV* = 16? Pixel FOV across/along* = 0.44/0.44 mrad Bit resolution = 16 bit Noise floor = 80 e- Dynamic range = 7500 Peak SNR (at full resolution) > 800 Max speed (at full resolution) = 235 fps Power consumption = 10 W Dimensions (l-w-h) = 36 - 11- 15 cm Weight = 4.1 kg Camera Interface = CameraLink *Can be doubled with FOV expander | Spectral range = 930 - 2500 nm Spatial pixels = 384 Spectral channels = 288 Spectral sampling = 5.45 nm FOV* = 16? Pixel FOV across/along* = 0.73/0.73 mrad Bit resolution = 16 bit Noise floor = 150 e- Dynamic range = 7500 Peak SNR (at full resolution) > 1100 Max speed (at full resolution) = 400 fps Power consumption = 30 W Dimensions (l-w-h) = 38 - 12- 17.5 cm Weight = 5.7 kg Camera Interface = CameraLink *Can be doubled with FOV expander | Spectral Range (nm) = 400 - 1000 Spectral Channels = 447 Spectral Bandwidth (nm) = 1.3 Spectral Resolution - FWHM (nm) = 1.9 Spatial Pixels = 1600 Max Frame Rate (fps) = 165 f/# = 2.4 Interface = USB 3.0 Dimensions (mm) = 265 x 106 x 75 Weight, w/o lens (kg) = 2.51 |
I genuinely enjoy reading on this internet site, it holds fantastic content.