Cubert FIREFLEYE 185

Cubert FIREFLEYE 185

Spectral Range = 450 – 950 nm
Number of Bands = 125
FWHM = 8 nm @ 532 nm
Max Resolution = 1000 x 1000 pixel
Weight = Standard version: 490 g
Dimensions = Standard version: 200 x 67 x 60 mm
Technology = Multipoint Spectrometer
Sensor(s) = 5 MP & 2 MP
Spectral Sampling = 4 nm
Wavelength Error < 4 nm Total Spectra / Image = 2500 & 1 M pansharpened Total Data Points (Data Points / Cube) = 0.3 million Data Depths = 12 Bit/ 14 Bit Readout = Global shutter Max Frame Rate = Standard version: 25 Hz Integration Time = 0.1-1000 ms Field of View (FOV) = 30?, 20?, 13?, 7?, lens selectable Power Consumption = 7 W

SKU: Cubert FIREFLEYE 185 Category: Tag:
Compare

Assessing hyperspectral microscopy in real-time
The FireflEYE 185 brings hyperspectral imaging to microscopy, and also enables endoscopy. In life sciences the time-saving advantage of the snapshot technology (thanks to no-scanning) really makes itself known, as saving time saves patients. The camera can also monitor real-time processes, such as samples in petri dishes for example. The relay lens also allows for a lens change without camera re-calibration. And a close-up lens set allows a macroscopic scale view of a spot size of just a few mm.
For all scenarios
UAS Mapping – The FireflEYE 185 was the first-ever light-weight hyperspectral snapshot camera used for aerial mapping from a UAS. The user has a choice of lenses, enabling different fields of view for different tasks. In lab use the FireflEYE can be equipped with close-up lenses, allowing a macroscopic scale view with a spot size of only a few mm to cm. Attaching a relay lens to the FireflEYE provides for full interchangeability to Cmount lenses. Mount the camera on your microscope or endoscope without the need of an additional calibration. The latest improvements to the FireflEYE include upgrading the main sensor to a modern CMOS sensor. The 14-bit version has 2x higher signal-to-noise-ratio and 4x higher dynamic range compared to the S185 (needing 4 times longer integration times).

Reviews

There are no reviews yet.

Be the first to review “Cubert FIREFLEYE 185”

Your email address will not be published.

Data Quality
Hardware Quality
Customer Service & Support

Got something to discuss?


 

Quick Comparison

Cubert FIREFLEYE 185 removeSpecim AFX10 removeSpecim FX10 removeSpecim Fenix removeHySpex Baldur S-384 N removeHySpex Mjolnir VS-620 remove
NameCubert FIREFLEYE 185 removeSpecim AFX10 removeSpecim FX10 removeSpecim Fenix removeHySpex Baldur S-384 N removeHySpex Mjolnir VS-620 remove
Image
Rating
Rated 0 out of 5
Rated 0 out of 5
Rated 0 out of 5
Rated 0 out of 5
Rated 0 out of 5
Rated 0 out of 5
ContentAssessing hyperspectral microscopy in real-time The FireflEYE 185 brings hyperspectral imaging to microscopy, and also enables endoscopy. In life sciences the time-saving advantage of the snapshot technology (thanks to no-scanning) really makes itself known, as saving time saves patients. The camera can also monitor real-time processes, such as samples in petri dishes for example. The relay lens also allows for a lens change without camera re-calibration. And a close-up lens set allows a macroscopic scale view of a spot size of just a few mm. For all scenarios UAS Mapping - The FireflEYE 185 was the first-ever light-weight hyperspectral snapshot camera used for aerial mapping from a UAS. The user has a choice of lenses, enabling different fields of view for different tasks. In lab use the FireflEYE can be equipped with close-up lenses, allowing a macroscopic scale view with a spot size of only a few mm to cm. Attaching a relay lens to the FireflEYE provides for full interchangeability to Cmount lenses. Mount the camera on your microscope or endoscope without the need of an additional calibration. The latest improvements to the FireflEYE include upgrading the main sensor to a modern CMOS sensor. The 14-bit version has 2x higher signal-to-noise-ratio and 4x higher dynamic range compared to the S185 (needing 4 times longer integration times).Specim AFX10 Specim AFX10 is a VNIR hyperspectral imaging solution with an HSI camera, a small and powerful computer and a high-end GNSS/IMU unit in a compact enclosure that can be installed on multiple drone types.Specim FX10 Specim FX10 is a line-scan hyperspectral camera that operates in the visible and near-infrared (VNIR) region. It is an excellent tool for industrial and scientific applications. The Specim FX10 operates in the 400-1000 nm region, and the color-optimized Specim FX10c in the 400-780 nm region.Fenix FENIX is optimized for the most demanding geological, law enforcement, and environmental applications. In a single continuous image, FENIX spectral camera delivers the best hyperspectral data ever seen over VNIR, NIR, and SWIR wavelengths. FENIX offers extreme ruggedness and 75% reduction in size and weight compared to previous multi-sensor systems. The excellence in technical performance and physical size has been achieved through innovative and unique ?single optics dual spectrograph? design.HySpex Baldur S-384 N Baldur S-384 N covers the spectral range from 960-2500 nm. All Baldur cameras are Nyquist cameras giving a spectral resolution of 2 spectral bands while capturing 4 times as much light as the classic systems. To ensure that the most information per framerate is provided, the spectral resolution is kept very close to 2 bands. Additionally, the spatial resolution of Baldur S-384 N is better than 1.5 pixels, yielding a very sharp camera.HySpex Mjolnir VS-620 For applications requiring low mass, combined with high-performance specifications and scientific grade data quality on the full VNIR-SWIR range, HySpex Mjolnir VS-620 is an ideal solution. Sharing the onboard data acquisition unit and navigation system, HySpex Mjolnir VS-620 is both space-efficient and cost-effective. The VNIR and SWIR optical axis are coaligned in the along-track direction, assuring perfect coregistration in the flight direction. In addition to the high-quality hyperspectral data cube, covering the spectral range from 400 - 2500 nm, with 490 bands, double resolution data in the VNIR range is always readily available. With smile and keystone less than 0.1 pixels for each spectral range, the merged Mjolnir VS-620 data product will have coregistration/keystone better than 0.2 pixels for the full VNIR-SWIR range.
DescriptionSpectral Range = 450 - 950 nm Number of Bands = 125 FWHM = 8 nm @ 532 nm Max Resolution = 1000 x 1000 pixel Weight = Standard version: 490 g Dimensions = Standard version: 200 x 67 x 60 mm Technology = Multipoint Spectrometer Sensor(s) = 5 MP & 2 MP Spectral Sampling = 4 nm Wavelength Error < 4 nm Total Spectra / Image = 2500 & 1 M pansharpened Total Data Points (Data Points / Cube) = 0.3 million Data Depths = 12 Bit/ 14 Bit Readout = Global shutter Max Frame Rate = Standard version: 25 Hz Integration Time = 0.1-1000 ms Field of View (FOV) = 30?, 20?, 13?, 7?, lens selectable Power Consumption = 7 WSpectral Range = 400 - 1000 nm Spectral sampling = 2.68 nm Spectral resolution = 5.5 nm Fore lens focal length = 15 mm Field of view = 38 deg F/# = 1.7 Spectral bands = 224 Binned by 2 Spatial pixels = 1024 Spectral binning options = 2, 4, 8 Spatial binning options = 1, 2 Multiple ROI = User-selectable Maximum frame rate = 330 fps Full frame Dynamic range = 1420 SNR = 400:1 2 spectral binning, 1 spatial binning Power input = 10-30 VDC. Use separate battery or UAV/gimbal power Power consumption = 17 W Typical Connectors = ANT, DC IN, ETH GPS Antenna, Power In, Web UI / Data download Storage temperature = -20 ? +50C Operating temperature = +5 ? +40C Relative humidity = 5 - 90 %. Non-condensing Drone options = Multirotor with gimbal/ Multirotor, no gimbal/ Fixed Wing UAV. Any drone with adequate payload capacity can be used. Gimbal = Optimized for MoVI pro. Other suitable gimbals may also be used Gimbal weight = 2.2 - 2.7 kg. Typical gimbal solution Operating height = 15 - 150 m. Typical, local limitations may apply GNSS/IMU = Trimble APX-15 GPS Antenna = Trimble AV 14 Internal Memory = 512GB SSD Dimensions (W x H x L) = 131 x 152 x 202 mm Weight (without gimbal) = 2.1 kg Weight (with gimbal) = 4.8 kg. Typical gimbal solutionSpectral Range = 400-1000 / 400-780 (c-version) Spectral resolution (FWHM) = 5.5 nm (mean) Spectral sampling/pixel = 2.7 nm, With default binning Spectral bands = 224 / 140 (c-version), With default binning Numerical aperture = 1.7, With default lens Optics magnification = 0.80 Effective pixel size = 19.9x9.97 ?m, At fore lens image plane Effective slit width = 42 ?m, At fore lens image plane Effective slit length = 10.2 mm, At fore lens image plane SNR @ max. signal = 420 : 1 Spatial samples = 1024 Bit depth = 12 Maximum frame rate = 327 FPS full range / 514 FPS full range (c-version) Binning = 2,4,8 spectral and spatial Default: 2 spectral x 1 spatial ROI = Freely selectable multiple bands of interest. Minimum height of ROI is two 1-binned rows. Maximum frame rate is determined by the total number of rows included in the mMROI?s Pixel operability = 99.993% Image corrections = Non uniformity correction/Bad pixel replacement/Automatic Image Enhancement (AIE)/One point NUC. AIE: Unified spectral calibration + corrected smile and keystone aberrations Sensor material = CMOS Sensor cooling = Passive Full well capacity = 90 ke- Read-out modes = IWR / ITR Optics temperature = Passive Lens mount = Custom mount Fore lens FOV options = 12 deg/ 38 deg (default)/ 47 deg/ 51 deg/ 83 deg. Only the default lens is specifically designed for FX10. With other lens options, optical parameters may vary. Camera digital data output/control interface = GigE Vision, CameraLink Camera control protocols = GenICam, ASCII Power input = 12 V DC (+-10%) Power consumption = Max 4 W Connectors = Industrial Ethernet OR CameraLink 26-pin, 0.5? MDR IP = IP52 Dimensions (L x W x H) = 150 x 85 x 71 mm Mounting surface option on three sides. Mounting kit adds 24 mm distance on mounting side. Weight = 1.3 kg Storage temperature = -20 ... +50?C (non-condensing) Operating temperature = +5 ? +40?C (non-condensing) Relative humidity = 5% - 95% (non-condensing)Spectral Range = 960 - 2500nm Spectral bands = 288 Max speed* = 500 fps Spectral sampling = 5.45 nm Spectral FWHM <2 bands Spatial FWHM <1.3 pixels Spatial pixels = 384 Keystone <15% of a pixel Smile <15% of band FOV = 16? / 40? Bit resolution = 16 bit Noise floor = 150 e- Peak SNR >1100 Dynamic range = 7500 ROI* = All bands can be selected/deselected individually External trigger options LVDS, 5V/12V/24V TTL Dimensions (l-w-h) = 368 - 131 - 175 mm Camera Interface = CameraLink * Reducing the number of spectral channels with ROI will proportionally increase the max framerate
Select the fields to be shown. Others will be hidden. Drag and drop to rearrange the order.
  • Image
  • Rating
  • Content
  • Description
Click outside to hide the comparison bar
Compare
Compare ×
Let's Compare! Continue shopping
Scroll to Top