Dual-Sensor Hyperspectral Camera designed for UAVs
The ULTRIS X20 Plus is the dual-sensor version of our X20, designed for aerial mapping from a UAV. A second camera takes panchromatic images in parallel to the spectral camera. It provides a resolution of 1886 x 1886 pixels, giving incredibly detailed images. The extra data allows us to use pansharpening to enhance the images even further and increase the spatial resolution of the spectral data. When it comes to stitching the single data files after the UAV flight, the additional data increases the spatial accuracy of the generated mosaic. Even though the ULTRIS X20 Plus integrates two sensors, it is still lightweight (630 g), so together with a gimbal, a mini computer and GPS the payload is still less than 2 kg, making it suitable for a wide range of drones, especially for the powerhouse DJI Matrice M300 RTK.
Cubert ULTRIS X20 PLUS
UV-VNIR Compare
Cubert ULTRIS X20 PLUS
Spectral Range = 350 – 1000 nm
Number of Bands = 164
FWHM = Constant 10 nm
Max Resolution = 1886 x 1886 pixel
Weight = 630 g
Dimensions = 86 x 121 x 105 mm
Technology = Light Field
Sensor(s) = 20 MP & 5 MP
Spectral Sampling = 4 nm
Wavelength Error < 4 nm
Total Spectra / Image = 168 100 & 3.5 M pansharpened
Total Data Points (Data Points / Cube) = 27 million
Data Depths = 12 Bit
Readout = Global shutter
Max Frame Rate = 4 Hz
Integration Time = 0.1-1000 ms
Field of View (FOV) = 35?
Power Consumption = 8 W
Quick Comparison
Cubert ULTRIS X20 PLUS remove | Specim FX17 remove | HySpex VNIR-1800 remove | Resonon Pika L remove | Resonon Pika IR remove | Hyspex SWIR-640 remove | |
---|---|---|---|---|---|---|
Name | Cubert ULTRIS X20 PLUS remove | Specim FX17 remove | HySpex VNIR-1800 remove | Resonon Pika L remove | Resonon Pika IR remove | Hyspex SWIR-640 remove |
Image | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
Rating | ||||||
Content | Dual-Sensor Hyperspectral Camera designed for UAVs The ULTRIS X20 Plus is the dual-sensor version of our X20, designed for aerial mapping from a UAV. A second camera takes panchromatic images in parallel to the spectral camera. It provides a resolution of 1886 x 1886 pixels, giving incredibly detailed images. The extra data allows us to use pansharpening to enhance the images even further and increase the spatial resolution of the spectral data. When it comes to stitching the single data files after the UAV flight, the additional data increases the spatial accuracy of the generated mosaic. Even though the ULTRIS X20 Plus integrates two sensors, it is still lightweight (630 g), so together with a gimbal, a mini computer and GPS the payload is still less than 2 kg, making it suitable for a wide range of drones, especially for the powerhouse DJI Matrice M300 RTK. | Specim FX17 Specim FX17 hyperspectral camera operates in the near-infrared region and can literally see the invisible. It can reveal the targets? chemical composition, moisture, and foreign objects that are invisible to the human eye. Specim FX17 can, for example, detect different plastic types for recycling and measure the sugar level of fruits and vegetables and the moisture percentage of baked goods. | HySpex VNIR-1800 The HySpex VNIR-1800 hyperspectral camera is developed for field, laboratory, and airborne applications. HySpex VNIR-1800 utilizes a cutting edge actively cooled and stabilized scientific CMOS detector. This makes VNIR-1800 the ideal camera for high-end data acquisitions where high radiometric accuracy is required. The dynamic range of 20 000 ensures outstanding SNR levels even in darker areas of an image of highly dynamic scenes. With a max frame rate of 260 fps, combined with aberration-corrected optics and high optical throughput (f/2.5), HySpex VNIR-1800 offers a unique combination of data quality, high speed, and sensitivity. A wide range of close-up lenses allows the use of the camera at working distances ranging from a few centimeters with a spatial resolution of 24 ?m to infinity e.g. airborne remote sensing. | Pika L 400 - 1000 nm Lightweight, Compact VNIR The Pika L is a lightweight, compact hyperspectral camera that covers the Visible + Near-Infrared (VNIR) spectral range. It is our most popular imager for remote sensing applications. The Pika L can be used in our airborne, laboratory, and outdoor hyperspectral systems, as well as standalone or integrated into your system. | Pika IR 900 - 1700 nm High-Speed Infrared The Pika IR (formerly Pika NIR-320) is a high-speed, cost-effective hyperspectral camera that covers the Near-Infrared (NIR) spectral range. It is our most popular imager for machine vision applications. The Pika IR can be used in our airborne, laboratory, and outdoor hyperspectral systems, as well as standalone or integrated into your system. | HySpex SWIR-640 The HySpex SWIR-640 hyperspectral camera is developed for field, laboratory, and airborne applications. HySpex SWIR-640 offers high spatial resolution by using a unique MCT sensor. The FPA is cooled to 150K using a sterling cooler, yielding low background noise, high dynamic range, and exceptional SNR levels. The camera offers an aberration-corrected optical system with high optical throughput (f/2.0), the data quality, sensitivity, and resolution is truly state of the art. A wide range of close-up lenses allows the use of the camera at working distances ranging from a few centimeters, with a spatial resolution of 32 ?m, to infinity for e.g. airborne remote sensing. |
Description | Spectral Range = 350 - 1000 nm Number of Bands = 164 FWHM = Constant 10 nm Max Resolution = 1886 x 1886 pixel Weight = 630 g Dimensions = 86 x 121 x 105 mm Technology = Light Field Sensor(s) = 20 MP & 5 MP Spectral Sampling = 4 nm Wavelength Error < 4 nm Total Spectra / Image = 168 100 & 3.5 M pansharpened Total Data Points (Data Points / Cube) = 27 million Data Depths = 12 Bit Readout = Global shutter Max Frame Rate = 4 Hz Integration Time = 0.1-1000 ms Field of View (FOV) = 35? Power Consumption = 8 W | Spectral Range = 900-1700 nm Spectral resolution (FWHM) = 8 nm (mean) Spectral sampling/pixel = 3.5 nm Spectral bands = 224 With default binning Numerical aperture = 1.7 With default lens Optics magnification = 0.80 Effective pixel size = 18.7 ?m At fore lens image plane Effective slit width Physical width = 42?m. Projection on sensor = 32 ?m (M=1.3) At fore lens image plane Effective slit length = 12.0 mm At fore lens image plane SNR @ max. signal = 1000:1 Bit depth = 12 Maximum frame rate = 670 (FX17)/ 527 (FX17e) FPS full range Binning = 1,2,4 spectral and spatial Default: 1 spectral x 1 spatial ROI = Freely selectable multiple bands of interest. Minimum height of ROI is two 1-binned rows. Maximum frame rate is determined by total number of rows between first row of first mROI and last row of last mROI and the total number of rows included in the mMROI?s. Pixel operability = 99.5%. Allowed clusters: Size 2-6 pixels: N/A/ Size 7-12 pixels: ? 6/ Size 13-19 pixels: ? 2/ Size 20-35 pixels: ? 1/ Size > 35: 0 Image corrections = Non uniformity correction/ Bad pixel replacement/ Automatic Image Enhancement (AIE)/One point NUC. AIE: Unified spectral calibration + corrected smile and keystone aberrations Sensor material = InGaAs Sensor cooling = TEC Full well capacity = 1.44 Me- Read-out modes = IWR / ITR Optics temperature = Passive Default is 20 degrees Celsius Lens mount = Custom mount Fore lens FOV options = 12 deg/38 deg (default)/53 deg/66 deg/75 deg/90 deg. Only the default lens is specifically designed for FX17. With other lens options, optical parameters may vary. Camera digital data output/control interface = GigE Vision, CameraLink Camera control protocols = GenICam, ASCII Power input = 12 V DC (+-10%) Power consumption = Max 24 W Connectors = Industrial Ethernet OR CameraLink (standard MDR 26-pin). Power - Fischer 12pin DBPLU1031Z012|130G IP = IP52 Dimensions (L x W x H) = 150 x 75 x 85 mm Mounting surface option on three sides. Mounting kit adds 24 mm distance on mounting side. Weight = 1.56 kg Storage temperature = -20 ... +50 oC (non-condensing) Operating temperature = +5 ... +40 oC (non-condensing) Relative humidity = 5% - 95% (non-condensing) | Spectral range = 400 - 1000 nm Spatial pixels = 1800 Spectral channels = 186 Spectral sampling = 3.26 nm FOV* = 17? Pixel FOV across/along* = 0.16/0.32 mrad Bit resolution = 16 bit Noise floor = 2.4 e- Dynamic range = 20000 Peak SNR (at full resolution) > 255 Max speed (at full resolution) = 260 fps Power consumption = 30 W Dimensions (l-w-h) = 39 - 9.9 - 15 cm Weight = 5.0 kg Camera Interface = CameraLink *Can be doubled with FOV expander | Spectral Range (nm) = 400 - 1000 Spectral Channels = 281 Spectral Bandwidth (nm) = 2.1 Spectral Resolution - FWHM (nm) = 3.3 Spatial Pixels = 900 Max Frame Rate (fps) = 249 f/# = 2.4 Interface = USB 3.0 Dimensions (mm) = 115 x 104 x 66 Weight, w/o lens (kg) = 0.64 | Spectral Range (nm) = 900 - 1700 Spectral Channels = 168 Spectral Bandwidth (nm) = 4.8 Spectral Resolution - FWHM (nm) = 8.8 Spatial Pixels = 320 Max Frame Rate (fps) = 508 f/# = 1.8 Interface = GigE Dimensions (mm) = 264 x 115 x 88 Weight, w/o lens (kg) = 2.95 | Spectral range = 960 - 2500 nm Spatial pixels = 640 Spectral channels = 360 Spectral sampling = 4.38 nm FOV* = 16? Pixel FOV across/along* = 0.44/0.44 mrad Bit resolution = 16 bit Noise floor = 80 e- Dynamic range = 7500 Peak SNR (at full resolution) > 800 Max speed (at full resolution) = 235 fps Power consumption = 10 W Dimensions (l-w-h) = 36 - 11- 15 cm Weight = 4.1 kg Camera Interface = CameraLink *Can be doubled with FOV expander |
Leave a Reply