NEW Nano HP?
Designed with ideal Size, Weight, and Power consumption (SWaP) for Unmanned Aerial Vehicles (UAVs) and containing aberration-corrected optics, an internal solid-state drive (SSD), Gigabit Ethernet interface, and choice of lenses.
Headwall Nano HP
Headwall Nano HP
Wavelength Range = 400 – 1,000 nm
Spectral Bands = 340
Spatial Pixels = 1020
Camera Technology = CMOS
Pixel Pitch = 5.86 ?m
Aperture = f/2.5
Dispersion/Pixel = 1.76 nm
Entrance Slit Width = 20 ?
Spectral FWHM = 6 nm
Frame Rate (Sustained)* = 250 Hz
ADC Bit Depth = 12 bits
Spectrograph Design = Aberration-Corrected
Digital Interface = GigE
GPS/IMU = Internally Mounted High-Performance with PPK4
Data Storage on Payload = 480 GB Solid-State
Weight (without / with LiDAR) = 1.05 kg (2.32 lbs) / 1.73 kg (3.81 lbs)
Base Dimensions (without / with LiDAR) = 132 x 102 x 73 mm (5.2 x 4.0 x 2.9 in) / 132 x 175 x 99 mm (5.2 x 6.9 x 3.9 in)
Power without LiDAR (typical) = 14.4 W
Operational Temp Range = 0 – 40 ?C / 32 – 104 ?F
Storage Temp Range = -20 – 60 ?C / -4 – 140 ?F
*250 Hz with LiDAR enabled
Reviews
There are no reviews yet.
Quick Comparison
Headwall Nano HP remove | Resonon Pika IR remove | HySpex VS-1200 remove | Specim FX50 remove | Hyspex SWIR-640 remove | Specim FX10 remove | |
---|---|---|---|---|---|---|
Name | Headwall Nano HP remove | Resonon Pika IR remove | HySpex VS-1200 remove | Specim FX50 remove | Hyspex SWIR-640 remove | Specim FX10 remove |
Image | ||||||
Rating | ||||||
Content | NEW Nano HP? Designed with ideal Size, Weight, and Power consumption (SWaP) for Unmanned Aerial Vehicles (UAVs) and containing aberration-corrected optics, an internal solid-state drive (SSD), Gigabit Ethernet interface, and choice of lenses. | Pika IR 900 - 1700 nm High-Speed Infrared The Pika IR (formerly Pika NIR-320) is a high-speed, cost-effective hyperspectral camera that covers the Near-Infrared (NIR) spectral range. It is our most popular imager for machine vision applications. The Pika IR can be used in our airborne, laboratory, and outdoor hyperspectral systems, as well as standalone or integrated into your system. | HySpex VS-1200 The HySpex VS-1200 hyperspectral camera is developed for airborne applications requiring extreme resolution in both VNIR and SWIR spectral regions. The HySpex VS-1200 is a novel high-resolution instrument designed for airborne applications at altitudes greater than 400m. The camera produces the highest scientific grade level data, commercially available, having FWHM less than 1.2 pixels spatially and less than 1.5 pixels spectrally. The combined VNIR-SWIR cube has coregistration errors, and smile and keystone of less than 10% of a pixel. With 40 degrees FOV, the camera is ideal for mapping large areas with high accuracy and resolution. The camera is delivered with an integrated high-performance IMU/GPS and data acquisition unit with removable storage bays as a standard. Existing navigation systems can also be integrated/utilized. A standard passive damping solution is included as a part of the default delivery package, but mounting plates for active damping solutions, such as GSM4000 or PAV80 can be supplied. | Specim FX50 Specim FX50 is the only hyperspectral camera on the market covering the full mid-wave infrared (MWIR) spectral range of 2.7 - 5.3 ?m required, for example, in black plastics sorting. Specim FX50 is a high-speed, accurate, and efficient line-scan hyperspectral camera designed specifically for industrial environments. | HySpex SWIR-640 The HySpex SWIR-640 hyperspectral camera is developed for field, laboratory, and airborne applications. HySpex SWIR-640 offers high spatial resolution by using a unique MCT sensor. The FPA is cooled to 150K using a sterling cooler, yielding low background noise, high dynamic range, and exceptional SNR levels. The camera offers an aberration-corrected optical system with high optical throughput (f/2.0), the data quality, sensitivity, and resolution is truly state of the art. A wide range of close-up lenses allows the use of the camera at working distances ranging from a few centimeters, with a spatial resolution of 32 ?m, to infinity for e.g. airborne remote sensing. | Specim FX10 Specim FX10 is a line-scan hyperspectral camera that operates in the visible and near-infrared (VNIR) region. It is an excellent tool for industrial and scientific applications. The Specim FX10 operates in the 400-1000 nm region, and the color-optimized Specim FX10c in the 400-780 nm region. |
Description | Wavelength Range = 400 - 1,000 nm Spectral Bands = 340 Spatial Pixels = 1020 Camera Technology = CMOS Pixel Pitch = 5.86 ?m Aperture = f/2.5 Dispersion/Pixel = 1.76 nm Entrance Slit Width = 20 ? Spectral FWHM = 6 nm Frame Rate (Sustained)* = 250 Hz ADC Bit Depth = 12 bits Spectrograph Design = Aberration-Corrected Digital Interface = GigE GPS/IMU = Internally Mounted High-Performance with PPK4 Data Storage on Payload = 480 GB Solid-State Weight (without / with LiDAR) = 1.05 kg (2.32 lbs) / 1.73 kg (3.81 lbs) Base Dimensions (without / with LiDAR) = 132 x 102 x 73 mm (5.2 x 4.0 x 2.9 in) / 132 x 175 x 99 mm (5.2 x 6.9 x 3.9 in) Power without LiDAR (typical) = 14.4 W Operational Temp Range = 0 - 40 ?C / 32 - 104 ?F Storage Temp Range = -20 - 60 ?C / -4 - 140 ?F *250 Hz with LiDAR enabled | Spectral Range (nm) = 900 - 1700 Spectral Channels = 168 Spectral Bandwidth (nm) = 4.8 Spectral Resolution - FWHM (nm) = 8.8 Spatial Pixels = 320 Max Frame Rate (fps) = 508 f/# = 1.8 Interface = GigE Dimensions (mm) = 264 x 115 x 88 Weight, w/o lens (kg) = 2.95 | Spectral Range = 2.7 - 5.3 ?m Spectral resolution (FWHM) = 35 nm Spectral sampling/pixel = 8.44 nm, Without binning Spectral bands = 154, With default binning Numerical aperture = 2.0 Optics magnification = 0.5 Effective pixel size = 30 ?m, At fore lens image plane Effective slit width = 104 ?m, At fore lens image plane Effective slit length = 19.2 mm, At fore lens image plane Dynamic Range = 1600:1 with 1.5 ms exposure time Usable dynamic range / noise Spatial samples = 640 Bit depth = 16 Maximum frame rate = 380 fps, Full image with default binning Binning = 1,2,4 spectral and spatial, Default: 2 spectral x 1 spatial ROI = Freely selectable multiple bands of interest. Minimum height of ROI is two 1-binned rows. Maximum frame rate is determined by total number of rows between first row of first mROI and last row of last mROI - not the total number of rows included in the mMROI?s. Pixel operability = Number of operable pixels >99.7%. Allowed clusters: Size 4-8 pixels: <= 12/ Size 9-12 pixels: 2/ Size 13-19 pixels: 1/ Size >19 pixels: 0 Image corrections = Non uniformity correction/Bad pixel replacement/Automatic Image Enhancement (AIE). One point NUC. AIE: Unified spectral calibration + corrected smile and keystone aberrations Sensor material = InSb Integrated cooler = Stirling Up to 10000 hours Full well capacity = 5.1 Me- Read-out modes = IWR / ITR Optics temperature = TEC-stabilized Default is 20 degrees Celsius Lens mount = Custom mount Fore lens options = OLEM43, OLEM23, OLEM17 Field of view = 24 deg, 45 deg, 60 deg Camera digital data output/control interface = GigE Vision, Custom ethernet Camera control protocols = GenICam, JSON-RPC Power input = 24 V DC Power consumption = Max 90 W, Typical 40 W, During simultaneous cool-down of optics and detector Connectors = Ethernet/ Aux - 0306423 (09-0428-90-08) Binder 8pin/ Power - 0306627 (LF10WBR-4P) Hirose 4pin Trigger in IP = IP40 Dimensions (L x W x H) = 280 x 202 x 169 mm Mounting surface option on three sides. Mounting kit adds 24 mm distance on mounting side. Weight = 7 kg Storage temperature = -20 ... +50 oC Operating temperature = +5 ... +40 oC Relative humidity = 5% - 95% (non-condensing) | Spectral range = 960 - 2500 nm Spatial pixels = 640 Spectral channels = 360 Spectral sampling = 4.38 nm FOV* = 16? Pixel FOV across/along* = 0.44/0.44 mrad Bit resolution = 16 bit Noise floor = 80 e- Dynamic range = 7500 Peak SNR (at full resolution) > 800 Max speed (at full resolution) = 235 fps Power consumption = 10 W Dimensions (l-w-h) = 36 - 11- 15 cm Weight = 4.1 kg Camera Interface = CameraLink *Can be doubled with FOV expander | Spectral Range = 400-1000 / 400-780 (c-version) Spectral resolution (FWHM) = 5.5 nm (mean) Spectral sampling/pixel = 2.7 nm, With default binning Spectral bands = 224 / 140 (c-version), With default binning Numerical aperture = 1.7, With default lens Optics magnification = 0.80 Effective pixel size = 19.9x9.97 ?m, At fore lens image plane Effective slit width = 42 ?m, At fore lens image plane Effective slit length = 10.2 mm, At fore lens image plane SNR @ max. signal = 420 : 1 Spatial samples = 1024 Bit depth = 12 Maximum frame rate = 327 FPS full range / 514 FPS full range (c-version) Binning = 2,4,8 spectral and spatial Default: 2 spectral x 1 spatial ROI = Freely selectable multiple bands of interest. Minimum height of ROI is two 1-binned rows. Maximum frame rate is determined by the total number of rows included in the mMROI?s Pixel operability = 99.993% Image corrections = Non uniformity correction/Bad pixel replacement/Automatic Image Enhancement (AIE)/One point NUC. AIE: Unified spectral calibration + corrected smile and keystone aberrations Sensor material = CMOS Sensor cooling = Passive Full well capacity = 90 ke- Read-out modes = IWR / ITR Optics temperature = Passive Lens mount = Custom mount Fore lens FOV options = 12 deg/ 38 deg (default)/ 47 deg/ 51 deg/ 83 deg. Only the default lens is specifically designed for FX10. With other lens options, optical parameters may vary. Camera digital data output/control interface = GigE Vision, CameraLink Camera control protocols = GenICam, ASCII Power input = 12 V DC (+-10%) Power consumption = Max 4 W Connectors = Industrial Ethernet OR CameraLink 26-pin, 0.5? MDR IP = IP52 Dimensions (L x W x H) = 150 x 85 x 71 mm Mounting surface option on three sides. Mounting kit adds 24 mm distance on mounting side. Weight = 1.3 kg Storage temperature = -20 ... +50?C (non-condensing) Operating temperature = +5 ? +40?C (non-condensing) Relative humidity = 5% - 95% (non-condensing) |